AURORALABS

LOCI - The First CPU-GPU
Software Execution-Aware Model

Signal Faults and Errors
No Run, Before Tests, Logs or Production

Buitt for Embedded Software\Engineers

%
% %
t‘ ‘l‘
%
% %
b

i Published Q1 2026

LOCI, an MCP and S2-based solution, provides a new layer of intelligence for developers across
networking, embedded systems, Al infrastructure, inference, and performance-sensitive systems.
Unlike generic Al assistants, LOCI is designed to understand how code really interacts with
hardware; it does not stop on syntax- it analyzes the exe files after the project build is completed,
gives feedback, and finds bugs without running the SW.

Specialized model, trained on CPU-GPU executions in different conditions

LOCI does not run or execute the software. Instead, it reads the program’s existing compiled
executable as static data and analyzes its structure. Even without execution, the binary already
contains the full logic of how the software can behave—its functions, branches, loops, and call
relationships.

LOCI breaks this static executable into execution units, maps all possible execution paths, and
reconstructs a behavioral model of the program.

To make this static structure come to life, as if it were running, LOCI applies learned proprietary
performance models for CPUs and GPUs that capture real hardware execution behavior.

L1111

r ‘ - x Bugs
1 COAE - .|l cpPu/GPu || '
) execution .1 Performance
: — aware SRR RRasoning :-. D regression
2. Exec Files ---~ model | :
1 - L ; Power spikes

TT1T1T17T

These models estimate how long each part of the executable would take to run, how much power it
would consume, and how it would stress hardware resources. LOCI composes these estimates
across full execution paths and call stacks to produce predicted timelines, flame graphs, response
times, power profiles, and bottleneck analysis—all without ever running the software.

LOCI analyzes from executable files without running them:

¢ Throughput, Bandwidth, Latency

¢ Al/LLM Networking: tokens-per-second drift

¢ CPU execution paths and branching behavior

¢ GPU kernels, warp divergence, and memory coalescing

¢ Logical bugs such as null dereferences, race conditions, and edge-case logic
¢ Power anomalies

¢ Memory pressure, allocation patterns, and concurrency hazards

AURORALABS

Large language models are generative systems optimized to produce plausible sequences of text or
code, which can lead to hallucination when the model generates outputs that are syntactically valid
but not grounded in execution reality. In contrast, the LOCI model is not generative and does not
produce free-form outputs. It is trained in a supervised manner to predict a single, bounded numeric
value - execution time, directly from assembly-level representations and measured ground-truth
data. Because LOClI’s outputs are constrained, physically meaningful, and tied to executable
structure and hardware behavior, it cannot fabricate results or invent behaviors outside the defined
execution domain.

LOCI automatically comments on pull requests, surfacing issues developers often miss:

* Performance drift detected (+12.4%) in processFrame(): nested loop increases GPU pressure.
* Power anomaly identified in computeTransform(): risk of IR-drop under peak load.
* Logical bug found: uninitialized variable 'bufferLen' and potential null pointer dereference.

In addition, LOCI provides fixes:

1. Move memory allocation outside the inner loop to stabilize GPU timing.
2. Align GPU and CPU execution paths to avoid unpredictable divergence.
3. Ensure all variables are initialized before branching logic.

UPSTREAM PR #290! ID bug in SSL_CERT_LOOKUP array construction #

iClosed
B DajanaV wants to mer s into : Q

GitHub Pull Request Example e

In the screenshot below, you can see a .

full analysis of PR in the GitHub OpenSSL iﬁ:f{,?: 2?,23;‘2;“'3 Summary: OpenSSL. ssl_load.sigalos
project before engaging in code review or Key Findings

eXECUti ng a ny teStS * Critical Performance Degradations

Click here to enter the project on GitHub: The analysis identified severe performance regressions concentrated in a single function:
https://github.com/auroralabs- s v 155 v o s 1)

loci/openssl/pull/5 . ;::::::::‘ 72(;//‘;:::::9(;72":21::“'

This function is critical to OpenSSL's core functionality as it handles signature algorithm loading during SSL context
initialization, directly impacting TLS handshake performance.

Root Cause Analysis

Code Changes: PR #29027 introduced a hierarchical key type inference mechanism to fix NID bugs in SSL_CERT_LOOKUP

This eliminates guesswork and
provides developers with clarity
before CI/CD pipelines even start.

Performance Impact Drivers:
1. Memory Access Overhead: Changed from 1 to up to 3 memory loads per iteration
2. Branch Complexity: Simple linear loop became multi-path conditional structure
3. Instruction Count: 15+ instructions per iteration vs. 7 in base version

Control Flow Analysis

CFG comparison revealed fundamental algorithmic changes:

- Base Version: Simple 2-node loop with single conditional check
« New Version: Complex 5-node loop with 3 different execution paths

« Branch Prediction Impact: Multiple data-dependent conditional branches significantly increase misprediction penalties

Power Consumption Impact

Logic, Performance, and Power Analysis of OpenSSL PR#29027, Oct 29, 2025

AURORALABS

https://github.com/auroralabs-loci/openssl/pull/5
https://github.com/auroralabs-loci/openssl/pull/5
https://github.com/auroralabs-loci/openssl/pull/5

| Via GitHub comment @LOCI-DEV or directly from your IDE

LOCI supports interactive Q&A inside the PR. Developers can ask targeted engineering questions:

» Why did execution time increase?

* Which lines introduced performance drift?

* What caused the sudden power spike?

* Does this change introduce logical or memory safety risks?

Example of LOCI response:

"Execution drift is caused by a memory allocation moved inside a high-frequency loop.
TCP_IP_Send shows a 4.7% slowdown. Variable 'packetCount’' may be uninitialized.
Recommended fixes: refactor allocation, initialize variable, rebalance branching logic."

The following is LOCI’s terminal App for VS Code, using its CPU/GPU execution aware modeling to
find Bugs and Performance issues after project build, before running tests

EXPLORER @ Narnaiadapt « J-memory.cop ¢ llama-context.cpp X

v LLAMA.CPP-UPSTREAM-PR16490-BRANCH_G..
ENTION_TYPE_UNSPECIFIED
== LLAMA_ATTENTION_TYPE_CAUSAL;

t= LLAMA_FLASH_ATTN_TYPE_DISABLED;

REUSE_DISABLE
AMA_GRAPH_REUSE _|

OUTLINE
TIMELINE

LOCI Terminal

llama-context.cpp X

type == LLAMA_ATTENTION_TYPE_CAUSAL;

cparans. flash_attn = params.flash_attn_type != LLAMA_FLASH_ATTN_TYPE_DISABLED;

LOCI flagged the most

impactful degradation :
issue. S ‘ BN e W
The top 3 critical

functions are presented —_Z

alled MORE frequently

Critical Function #1: Tree Iterator (+218% slower)sx

AURORALABS

Engineering teams using LOCI consistently report measurable improvements within 2-3 weeks:

* 20%-40% reduction in test cycle time due to earlier detection
* Fewer regressions reaching integration and system-level tests
e Faster code reviews with factual, hardware-aware insights

e Stronger predictability in release cadence

¢ Reduced engineering cost through minimized rework

LOCI reduces the costliest factor in modern engineering: the late discovery of regressions.

Developers can see LOCI live today on open-source workflows such as OpenSSL, where LOCI
interacts directly with contributors.

Enhance your workflow with extensions

Tools from the community and partners to simplify tasks and automate processes

loci QlQ

& ey Search results for “loci”

4 results

Filter: All - By:Allcreators ~ Sort: Popularity ~
® Actions

LOCI Action > locize download
+ Create a new extension ormance insights direc Y Download translation files from

v -acti A m LOCI Agentic Al

Catch regressions before testing. Build with confidence

Next Steps:
() 1.seeLoClIinactionin
& 2

‘ 3. Contact us at or visit

Follow us: X m ﬂ
www.auroralabs.com

The content of this document is proprietary information of Aurora Labs. © 2026 AURORA LABS

https://github.com/auroralabs-loci/openssl/pull/5
https://calendly.com/aurora-labs-meeting/introduction-meeting
mailto:info@auroralabs.com
http://www.auroralabs.com/
https://www.facebook.com/TheAuroraLabs/�
https://www.linkedin.com/company/auroralabs/posts/�
https://x.com/theauroralabs�

	Meet LOCI: The GPU/CPU-Execution Aware Agent that other LLMs do not have LOCI, an MCP and S2-based solution, provides a new layer of intelligence for developers across networking, embedded systems, AI infrastructure, inference, and performance-sensi...
	LOCI does not run or execute the software. Instead, it reads the program’s existing compiled executable as static data and analyzes its structure. Even without execution, the binary already contains the full logic of how the software can behave—its fu...
	These models estimate how long each part of the executable would take to run, how much power it would consume, and how it would stress hardware resources. LOCI composes these estimates across full execution paths and call stacks to produce predicted t...
	Large language models are generative systems optimized to produce plausible sequences of text or code, which can lead to hallucination when the model generates outputs that are syntactically valid but not grounded in execution reality. In contrast, th...
	LOCI | Software Engineering Intelligence for Embedded Software Engineers.

