
wolfSSL Products
www.wolfSSL.com

● wolfSSL - Embedded SSL/ TLS Library

● wolfCrypt - Embedded Crypto Engine

● All the News on wolfSSL FIPS

● wolfTPM - Portable TPM 2.0 Library

● wolfMQTT - Client Library

● wolfSSH Lightweight SSH Library

● wolfBoot - Secure Bootloader

● wolfProvider

● wolfSentry - Embedded IDPS

● wolfEngine - wolfCrypt FIPS engine for OpenSSL

● wolfFE - File Encryption for support of Double Layer encryption

(CSfC-listed and NIAP-certified)

● wolfEnropy - SP 800-90B Software TRNG Source

● wolfSSL - Adds Support for DO-178 DAL A

● cURL - Command Line Tool & Library

● wolfSSL TLS 1.3 Sniffer

● TLS 1.3 - Now Available in wolfSSL

● Post-Quantum - wolfSSL

● wolfRand - Qualified Entropy Source (page 1)

● wolfRand - Qualified Entropy Source (page 2)

● Kyber ML-KEM

Table of contents

1/2

● wolfCrypt FIPS 140-3 Cryptographic Module

● wolfHSM

● wolfSSL Cybersecure and Compliant Satellite
Communication with full FIPS 140-3 and CNSA 2.0 Support

Table of contents

2/2

Description

The wolfSSL library is a lightweight SSL/TLS
library written in ANSI C and targeted for
embedded, RTOS, and resource-constrained
environments - primarily because of its small
size, speed, and feature set. It is commonly used
in standard operating environments as well
because of its royalty-free pricing and excellent
cross platform support. wolfSSL supports
industry standards up to the current TLS 1.3 and
DTLS 1.3 levels, is up to 20 times smaller than
OpenSSL, and offers progressive ciphers such
as ChaCha20, Curve25519, Poly1305, ED25519,
and SHA-3. User benchmarking and feedback
reports dramatically better performance when
using wolfSSL over OpenSSL.

wolfSSL is powered by the wolfCrypt library.
wolfCrypt is FIPS 140-3 Level 1 validated, with
certificates #4718.

For additional information, visit our FIPS FAQ
page or contact fips@wolfssl.com.

wolfSSL is built for maximum portability, and is
generally very easy to compile on new platforms.
If your desired platform is not listed under the
supported operating environments, please
contact wolfSSL.

wolfSSL supports the C programming language
as a primary interface. It also supports several
other host languages, including Java, C#, Ada,
and Python, as well as PHP and Perl (through a
SWIG interface). If you have interest in using
wolfSSL in another programming language that it
does not currently support, please contact
wolfSSL at facts@wolfssl.com.

wolfSSL Embedded SSL/ TLS Library

Features

● TLS 1.3 support (client and server)
● DTLS 1.1, 1.2 and 1.3 support (client and server)
● Legacy support for TLS 1.0, SSL 3.0, DTLS 1.0 (disabled by default) Minimum

footprint size of 20-100 KB
● Runtime memory usage between 1-36 KB
● FIPS Ready build for easily starting FIPS compliance preparations
● OpenSSL compatibility layer
● Simple API
● OCSP, OCSP Stapling, and CRL support
● Multiple Hashing Functions:

○ MD5, SHA-1, SHA-2 (SHA-224, SHA-256, SHA-384, SHA-512),
SHA-3, BLAKE2b, Poly1305

● Block, Stream, and Authenticated Ciphers:
○ AES (CBC, CTR, GCM, CCM, XTS, OFB, CFB, GMAC, CMAC),

Camellia, 3DES, ChaCha20
● Public Key Options:

○ RSA, DH, DHE, ECDH-ECDSA, ECDHE-ECDSA, ECDH-RSA,
ECDHE-RSA, Ed448, Ed25519, Curve448, Curve25519

● Post Quantum Algorithms (CNSA 2.0 compliant):
○ ML-KEM (Kyber), ML-DSA (Dilithium), LMS, XMSS

● Password-based Key Derivation:
○ HMAC, PBKDF2

● PCKS #1, 3, 5, 7–12 support
● Linux kernel module support
● ECC and RSA Key Generation
● X.509v3 RSA and ECC Signed Certificate Generation
● Mutual authentication support (client/server)
● PSK (Pre-Shared Keys) and PSK-DHE
● Persistent session and certificate cache
● PEM and DER certificate support
● Standalone Certificate Manager
● Hardware Crypto Support

○ Intel AES-NI, AVX1/2, RDRAND, RDSEED, SGX, Cavium NITROX,
Intel QuickAssist, STM32, NXP (CAU, mmCAU, SEC, LTC, CAAM),
Microchip PIC32MZ, ARMv8, Renesas (TSIP, FSP)

● SSL Sniffer (SSL Inspection) Support
● Portable Abstraction Layers/User Callbacks
● Open-Source Project Integrations

○ MySQL, OpenSSH, Apache, nginx, Open vSwitch, and more
● Embedded IDPS integration (wolfSentry)

wolfSSL Version 5.7.6
Release Date: 2024-12-31

Supported Chipmakers

wolfSSL has support for chipsets including ARM, Intel, Motorola,
mbed, NXP/Freescale, Microchip/Atmel, STMicro, Analog
Devices, Texas Instruments, Xilinx SoCs/FPGAs, Renesas,
Espressif, and more.

If you would like to use or test wolfSSL on another chipset or
OS, let us know and we’ll be happy to support you.

Supported Operating Environments

Win32/64, Linux, macOS, Solaris, ThreadX, VxWorks, FreeBSD,
NetBSD, OpenBSD, embedded Linux, Yocto Linux,
OpenEmbedded, WinCE, Haiku, OpenWRT, iPhone (iOS),
Android, Nintendo Wii and Gamecube through DevKitPro, QNX,
MontaVista, NonStop, TRON/ITRON/µITRON, Cesium, Micrium
µC/OS-III, FreeRTOS, SafeRTOS, NXP/Freescale MQX,
Nucleus,TinyOS, HP/UX, AIX, ARC MQX, TI-RTOS, uTasker,
embOS, INtime, Mbed, uT-Kernel, RIOT, CMSIS-RTOS,
FROSTED, Green Hills INTEGRITY, Keil RTX, TOPPERS,
PetaLinux, Apache Mynewt, PikeOS, Deos, Azure Sphere OS

wolfssl.com
github.com/wolfssl

Copyright © 2025 wolfSSL Inc. All Rights Reserved

mailto:fips@wolfssl.com

Description

The wolfCrypt cryptography engine is a lightweight crypto library
written in ANSI C and targeted for embedded and RTOS
environments - primarily because of its small size, speed, and
feature set. It is commonly used in standard operating environments
as well because of its royalty-free pricing and excellent cross
platform support.

wolfCrypt supports the most popular algorithms and ciphers as well
as progressive ones such as ChaCha20, Curve25519, Poly1305,
ED25519, and SHA-3. wolfCrypt is stable, production-ready,and
backed by our excellent team of security experts. It is used in
millions of applications and devices worldwide.

Highlights

• ECC, up to 521 bit
• Hash-based PRNG
• Progressive list of supported ciphers
• Post Quantum Cryptography support
• Lightweight - small footprint size, low runtime memory
• Portable - simple and clean API
• Modular design - Individual algorithms and ciphers are easily
broken out of the wolfCrypt package to be used independently

wolfCrypt is built for maximum portability and is generally very easy
to compile on new platforms. It supports the C programming
language as a primary interface.

For more information, please contact wolfSSL at
facts@wolfssl.com.

wolfCrypt Embedded Crypto Engine

Features

● Multiple Hash Functions:
○ MD5, SHA-1, SHA-2 (SHA-224, SHA-256,

SHA-384, SHA-512), SHA3, Poly1305
● Block, Stream, and Authenticated Ciphers:

○ AES (CBC, CTR, GCM, CCM, XTS, OFB,CFB,
GMAC, CMAC), DES, 3DES, ChaCha20

● Public Key Algorithms:
○ RSA, DH,DHE, ECDH-ECDSA, ECDHE-ECDSA,

ECDH-RSA, ECDHE-RSA,
● Post Quantum Algorithms (CNSA 2.0 compliant):

○ ML-KEM (Kyber), ML-DSA (Dilithium), LMS, XMSS
● Password-based Key Derivation: HMAC, PBKDF2
● Curve25519 and Ed25519
● PEM and DER certificate support
● X.509 Encoding / Decoding
● RSA and ECC Key Generation
● x509 v3 Signed Certificate Generation
● PKCS support:

○ PKCS#1 (RSA Cryptography Standard)
○ PKCS#5 (Password-Based Encryption Standard)
○ PKCS#7 (Cryptographic Message Syntax - CMS)
○ PKCS#8 (Private-Key Information Syntax)
○ PKCS#10 (Certificate Signing Request - CSR)
○ PKCS#12 (Personal Information Exchange Syntax

Standard)
● Assembly Optimizations
● Custom Memory Hooks
● Easily ties in to Hardware-based RNG solutions
● Hardware Cryptography Support: Intel AES-NI, AVX1/2,

RDRAND, RDSEED, SGX, Cavium NITROX, Intel
QuickAssist, STM32F2/F4, Freescale/NXP (CAU, mmCAU,
SEC, LTC), Microchip PIC32MZ, ARMv8, and more

● OpenSSL compatibility layer

Supported Chipmakers
wolfCrypt has support for chipsets including ARM, Intel,
Motorola, mbed, NXP/Freescale, Microchip/Atmel,
STMicroelectronics, Analog Devices, Texas Instruments, Xilinx
SoCs/FPGAs, Renesas, Espressif and more.
If you would like to use or test wolfSSL on another
chipset or environment, let us know and we’ll be happy
to support you.

Supported Operating Environments
Win32/64, Linux, macOS, Solaris, ThreadX, VxWorks, FreeBSD,
NetBSD, OpenBSD, embedded Linux, Yocto Linux, OpenEmbedded,
WinCE, Haiku, OpenWRT, iPhone (iOS), Android, Nintendo Wii and
Gamecube through DevKitPro, QNX, MontaVista, NonStop,
TRON/ITRON/µITRON, Cesium, Micrium µC/OS-III, FreeRTOS,
SafeRTOS, NXP/Freescale MQX, Nucleus, TinyOS, HP/UX, AIX, ARC
MQX, TI-RTOS, uTasker, embOS, INtime, Mbed, uT-Kernel, RIOT,
CMSIS-RTOS, FROSTED, Green Hills INTEGRITY, Keil RTX,
TOPPERS, PetaLinux, Apache Mynewt, PikeOS, Deos, Azure Sphere
OS

wolfssl.com
github.com/wolfssl

Copyright © 2025 wolfSSL Inc. All Rights Reserved

FIPS 140-3 Validation, Certificate #4718
We are the first to release under the new FIPS 140-3 validation procedures!

FIPS Ready Now Available!
wolfSSL offers a wolfCrypt FIPS Ready version of the library, providing FIPS-enabled cryptography within
the wolfSSL source tree. FIPS Ready does not grant a FIPS certificate, however it ensures compliance
with FIPS best practices, includes a default entry point, power-on self-tests, conditional algorithm self-tests
and is “ready” to be validated the moment a hard FIPS need arises. You can download wolfCrypt FIPS
Ready from https://www.wolfssl.com/download/ and access setup details in the
https://www.wolfssl.com/docs/fips-ready-user-guide/. For already validated modules just reach out to
fips@wolfssl.com. FIPS Ready a budget friendly alternative to full FIPS validated modules, it is intended
for prototyping or first-time FIPS users where a hard FIPS need is not yet realized but may become
necessary in the future.

New certificate #4718, Three Big Differences

● Includes the latest and greatest Algorithms, so potential FIPS users can stay at the cutting edge of
industry with confidence all algorithms can be validated if and when needed!

● Validated Entropy Source: Getting your entropy source properly validated is difficult and time
consuming. We’ve done the work and make it easy for our consumers.

● Extensible Hardware Encryption: wolfSSL certificate(s) support hardware encryption in an
extensible way. Currently supported AES-NI and ARMv7/8. The cert can be extended to additional
hardware encryption methods when demand arises.

wolfEntropy (MEMUSE)
wolfEntropy is our new, drop-in,validated entropy source for use with any cryptographic engine on Intel or
ARM and can be extended to additional silicone as needed.

OpenSSL Engine - wolfEngine
wolfCrypt FIPS can now operate as an OpenSSL engine for drop in FIPS replacement in your OpenSSL
applications.

OpenSSL 3.0 Provider Solution with FIPS - wolfProvider
wolfSSL has developed an OpenSSL 3.0 provider, allowing you to use the latest version of OpenSSL
backed by our FIPS-certified wolfCrypt library. Like wolfEngine, the wolfSSL provider for OpenSSL is an
excellent pathway for users looking to get FIPS compliance fast while still using OpenSSL.

All the News on wolfSSL FIPS

Learn More
For more information on wolfSSL TLS 1.3 features or to evaluate it, please contact us at facts@wolfssl.com.
Please send any comments or feedback on wolfSSL TLS 1.3 support to support@wolfssl.com. Thanks!

wolfssl.com
github.com/wolfssl

Copyright © 2025 wolfSSL Inc. All Rights Reserved

mailto:fips@wolfssl.com

Description

A Trusted Platform Module (TPM) is a cryptographic module that
includes key generation and storage capabilities. The wolfTPM
project is designed for embedded use with the TPM 2.0
specification.

Highlights:

● Securely generate, store, and use RSA or ECC keys
● Secure Non-Volatile (NV) data storage and counters key

hierarchy
● Three branches with different privileges to better separate

key purposes
● Hardware random number generator (TRNG)
● Dictionary attack prevention mechanisms

○ Hardware tracks and enforces attacks
● Quick key loading

○ Can load previously created TPM private key
material encrypted with a key only the TPM
knows

For more information, please contact wolfSSL at
facts@wolfssl.com.

wolfTPM Portable TPM 2.0 Library

Features

● Provides all TPM 2.0 API’s in compliance with the spec
● Built-in TPM TIS (Transport Interface Specification) layer

for direct SPI or I2C communication
● Supports parameter encryption between the Host and the

TPM to protect from man-in-the-middle attacks
○ Authenticated sessions with HMAC

■ Bound to Key and/or Salt
○ AES-CFB or XOR

● Backward API compatibility
● Bare-Metal or RTOS application or firmware
● Portability to different platforms:

○ Native C code designed for embedded use
○ Single IO callback for hardware SPI interface
○ No external dependencies
○ Compact code size and minimal memory use

● Includes stable wrapper API for:
○ Key Gen/Import/Export, RSA encrypt/decrypt,

ECC sign/verify, ECDH, NV, Hashing/HMAC,
AES, Policy, Secure Boot, Firmware Update

● Includes example code for:
○ Attestation (activate/make credential, quote)
○ TLS Client and Server
○ Endorsement Key/Cert retrieval and validation
○ Sealing/Unsealing Secrets
○ Use of the TPM's Non-volatile memory
○ Policies
○ Benchmarking TPM algorithms
○ PKCS#7
○ Certificate Signing Request (CSR)
○ Generation of signed timestamp

● Secure Boot integration with wolfBoot and U-Boot
● PKCS11 support using wolfPKCS11

○ Exposes TPM as PKCS11 interface

Product page: https://wolfssl.com/products/wolftpm
GitHub location: https://github.com/wolfSSL/wolfTPM

Supported Chipmakers
wolfTPM supports all TPM 2.0 modules including:
Infineon SLB9670/SLB9672/SLB9673, STMicro
ST33KTPM2X, Microchip ATTPM20, Nations Tech
Z32H330TC/NS350 and Nuvoton NPCT650/NPCT750

Supported Operating Environments
● Platform support for Raspberry Pi, STM32 with CubeMX,

Microchip/Atmel, Infineon TriCore, Xilinx and Barebox
● Support for Microsoft Windows, Linux and Bare-Metal
● Support for fTPM and Simulators

If you would like to use or test wolfTPM/wolfSSL on another chipset or
environment, let us know and we’ll be happy to support you.

wolfTPM Version: 3.8.0
Release Date: 2025-01-07

wolfssl.com
github.com/wolfssl

Copyright © 2025 wolfSSL Inc. All Rights Reserved

Overview
Trusted Platform Module (TPM) is a standardized secure processor that lives as a dedicated chip alongside the main processor (MCU,
CPU or SoC). TPM can be found in almost any modern computer systems. Computer programs can use a TPM to authenticate
hardware devices, since each TPM chip has a unique and secret RSA key burned in as it is produced. Applications can protect their
keys and secrets using the TPM as a vault.

wolfTPM is a portable, open-source TPM 2.0 stack with backward API compatibility, designed for embedded use. It is highly portable,
due to having been written in native C, having a single IO callback for hardware interface, no external dependencies, and its compact
code with low resource usage. The wolfTPM library includes a stable wrapper API interface to simplify common use cases and includes
many ready-to-use examples.

Description

MQTT (Message Queuing Telemetry Transport) is a lightweight
open messaging protocol that was developed for constrained
environments such as M2M (Machine to Machine) and IoT
(Internet of Things), where a small code footprint is required.
MQTT is based on the Pub/Sub messaging principle of publishing
messages and subscribing to topics. The protocol efficiently packs
messages to keep the overhead very low. The MQTT specification
recommends TLS as a transport option to secure the protocol
using port 8883 (secure-mqtt). Constrained devices can benefit
from using TLS session resumption to reduce the reconnection
cost.

The wolfMQTT library is a client implementation of the MQTT
written in C for embedded use. It supports SSL/TLS via the
wolfSSL library. It was built from the ground up to be
multi-platform, space conscience and extensible. It supports all
Packet Types, all Quality of Service (QoS) levels 0-2 and supports
SSL/TLS using the wolfSSL library. This implementation provides
support for MQTT v5.0 and is based on MQTT v3.1.1. Additionally,
there is also client support for MQTT-SN (Sensor Network).

wolfMQTT is built for maximum portability, and is generally very
easy to compile on new platforms. If your desired platform is not
listed under the supported operating environments, please contact
wolfSSL at facts@wolfssl.com.

wolfMQTT Client Library

Features

● Built from scratch by wolfSSL engineers
● Supports MQTT specifications v3.1.1 and v5.0
● Support for MQTT-SN
● Supports all client side packet types and protocol options
● Lightweight (Compiled size is less than 10KB)
● QoS Levels 0-2 (guaranteed delivery)
● Message integrity, security are still available
● Supports plain TCP or TLS (via the wolfSSL library)
● Single and multithread support
● Written in native C89 with portability/compatibility in mind
● User manual with build instructions, example overview, and

API documentation
● Example MQTT client implementations
● Network interface is abstracted via callbacks for

extensibility
● Packet parsing encoding/decoding structured for custom

use
● Minimal external dependencies (strlen, memcpy, memset)
● Detailed error checking/handling
● Doxygen style inline documentation
● Less than 1200 lines of well structured C code
● Tested on multiple variants of MQTT broker servers, QoS

levels 0-2 with/without TLS
● Tested on Linux, Mac OS X, and Freescale Kinetis K64
● Inherits wolfSSL library features such as lightweight TLS,

FIPS 140-3, small size and portability
● Open source (GPLv2) and commercial licensing
● FreeRTOS + TCP support
● Example Arduino IDE project
● Examples for AWS and Azure
● Example UART interface for wolfMQTT

GitHub location: https://github.com/wolfSSL/wolfMQTT

Supported Chipmakers
wolfSSL has support for chipsets including ARM, Intel,
Motorola, mbed, NXP/Freescale, Microchip (PIC32)/Atmel,
STMicroelectronics (STM32F2/F4), Analog Devices, TI,
and more.
If you would like to use or test wolfMQTT/wolfSSL on another
chipset or environment, let us know and we’ll be happy to
support you.

Supported Operating Environments
Win32/64, Linux, macOS, Solaris, ThreadX, VxWorks, FreeBSD,
NetBSD, OpenBSD, embedded Linux, Yocto Linux, OpenEmbedded,
WinCE, Haiku, OpenWRT, iPhone (iOS), Android, Nintendo Wii and
Gamecube through DevKitPro, QNX, MontaVista, NonStop,
TRON/ITRON/µITRON, Cesium, Micrium µC/OS-III, FreeRTOS,
SafeRTOS, NXP/Freescale MQX, TinyOS, HP/UX, AIX, ARC MQX, TI-
RTOS, uTasker, embOS, INtime, Mbed, uT-Kernel, RIOT, CMSIS-
RTOS, FROSTED, Green Hills INTEGRITY, Keil RTX, TOPPERS,
PetaLinux, Apache Mynewt, PikeOS

wolfssl.com
github.com/wolfssl

Copyright © 2025 wolfSSL Inc. All Rights Reserved

wolfMQTT Version: 1.19.1
Release Date: 2024-11-06

Description

The wolfSSH library is a lightweight SSHv2 client and server library
written in ANSI C and targeted for embedded, RTOS,
resource-constrained, and IoT environments - primarily because of
its small size, speed, and feature set. It is commonly used in
standard operating environments as well because of its royalty-
free pricing and excellent cross platform support.wolfSSL supports
the industry standard SSH v2.

wolfSSH is powered by the wolfCrypt library. wolfCrypt is FIPS
140-3 validated, with certificate #4718 and FIPS 140-2 validated,
with certificate #3389. For additional information, visit our FIPS
FAQ page or contact fips@wolfssl.com.

wolfSSH is built for maximum portability, and is generally very easy
to compile on new platforms. If your desired platform is not listed
under the supported operating environments, please contact
wolfSSL Inc.

wolfSSH supports the C programming language as a primary
interface. If you have interest in using wolfSSH in another
programming language that it does not currently support, please
contact wolfSSL Inc. at facts@wolfssl.com.

wolfSSH Lightweight SSH Library

Features

● SSH v2.0 (client and server)
● Minimum footprint size of 33kB
● Runtime memory usage between 1.4 and 2kB, not including

a configurable receive buffer
● Multiple Hashing Functions:

○ SHA-1, SHA-2 (SHA-256, SHA-384, SHA-512),
BLAKE2b

● Block, Stream, and Authenticated Ciphers: AES (CBC,
CTR, GCM)

● Public Key Options: RSA, DH, ECC
● Support for hybrid post quantum use with Kyber
● ECC Support (ECDSA with curves: NISTP256, NISTP384,

NISTP521)
● Curve25519 and Ed25519
● Client authentication support (RSA key, password)
● SCP and SFTP support
● Port forwarding support
● PEM and DER certificate support
● Hardware Cryptography Support:

○ Intel AES-NI and AVX1/2, RDRAND, RDSEED,
Cavium NITROX, STM32F2/F4 hardware crypto,
Freescale CAU/ mmCAU / SEC, Microchip
PIC32MZ, MPLAB Harmony on PIC32

● Echoserver functionality
● Includes a MS Visual Studio solution to simplify SSH usage

on Windows
● Interop Tested Against:

○ OpenSSH, Tera term, PuTTY, Dropbear, Firezilla,
BitVise

● FIPS 140-2 & FIPS 140-3 validated cryptography library
with wolfCrypt!

Product page: https://wolfssl.com/products/wolfSSH

GitHub location: https://github.com/wolfSSL/wolfSSH

Supported Chipmakers

wolfSSH has support for chipsets including ARM, Intel,
Motorola, mbed, NXP/Freescale, Microchip
(PIC32)/Atmel, STMicroelectronics (STM32F2/F4),
Analog Devices, TI, and more.

If you would like to test wolfSSH on another
environment, let us know and we’ll be happy to support
you.

Supported Operating Environments

TRON/ITRON/µITRON, Cesium, Micrium's µC/OS, FreeRTOS,
SafeRTOS, FreescaleMQX, Nucleus, TinyOS, HP/ UX, ARCMQX,
TI-RTOS, contiki, Riot-OS, ChibiOS, NuttX, CMSIS-OS, RTEMS,
and more
If you would like to test wolfBoot on another environment, let us
know and we’ll be happy to support you..

Current Version: 1.4.19 Release
Date: 2024-11-01

wolfssl.com
github.com/wolfssl

Copyright © 2025 wolfSSL Inc. All Rights Reserved

Description

wolfBoot is a secure bootloader that leverages wolfSSL's
underlying wolfCrypt module to provide signature authentication
for the running firmware. wolfBoot is easily ported and integrated in
existing embedded software projects. wolfBoot is designed to be a
portable, OS -agnostic, secure bootloader solution for all
embedded systems, relying on wolfCrypt for firmware
authentication.

wolfBoot comes with an included key generation tool. This tool
generates a key -pair up on building the wolfBoot library. The
generated key-pair can then be used to sign the firmware that is
being loaded on to the device, and to transform a bootable
firmware image to comply with the firmware image format required
by the bootloader.

Due to its minimalist design and the tiny Hardware Abstraction
Layer (HAL) API, wolfBoot is completely independent of any OS or
bare-metal application and can be easily ported and integrated
into existing embedded software solutions.

Upon receiving and installing a verified update, wolfBoot keeps a
backup copy of the newest firmware image that had been
confirmed to work correctly. If the new version is not confirmed by
the application itself, or whenever the image installed is damaged
or corrupt, the bootloader will restore the state of the system
before the most recent update.

wolfBoot is entirely written in C and ARM assembly language and
does not use any dynamic memory allocation, making it
usable in safety-critical environments. For more information,
please contact wolfSSL Inc. at facts@wolfssl.com

wolfBoot Secure Bootloader

Features

● Multi-slot partitioning of the flash device
● Integrity verification of the firmware image (s)
● Authenticity verification of the firmware image (s) using

wolfCrypt ’s public key cryptography algorithms:
○ RSA
○ ECC
○ ED25519, ED448
○ PQC (LMS, XMSS, ML-DSA)

● Highly reliable, transport-agnostic firmware update
● Minimalist Hardware Abstraction Layer (HAL) interface

to facilitate portability cross different vendors/ MCUs
● In -place chain-loading of the firmware image in the

primary slot
● Support for ARM TrustZone
● Support for bootloader updates (self-update)
● Support for incremental (delta) updates
● Support for external SPI flash memory
● HAL Support for 40+ different targets
● Protection against fault injection attacks
● Quantum-resistant authentication
● Hybrid mode (PQC + classic)
● Architectures supported:

○ ARM Cortex-M
○ ARM Cortex-A
○ ARM Cortex-R
○ Aurix TC3xx
○ 32-bit Risc-V
○ Intel x86_64
○ PowerPC (32 and 64 bits)
○ Renesas RXv3

● FIPS 1 40-3 validated cryptography library with wolfCrypt!
● DO-178C validation up to DAL-A

Supported Chipmakers
wolfBoot support includes the RISC-V, ARM Cortex -M,
ARM Cortex-R, PowerPC, Intel x86_64 and RXv3 boot
mechanisms among others.
If you would like to use or test wolfBoot/ wolfSSL on
another arcohitecture, let us know!

Supported Operating Environments
TRON/ITRON/µITRON, Cesium, Micrium's µC/OS, FreeRTOS, SafeRTOS,
FreescaleMQX, Nucleus, TinyOS, HP/ UX, ARCMQX, TI-RTOS, contiki,
Riot-OS, ChibiOS, NuttX, CMSIS-OS, RTEMS, Linux, Integrity OS and more
If you would like to test wolfBoot on another environment, let us know and
we’ll be happy to support you..

wolfSSL Version 5.7.6
Release Date: 2024-12-31
Current Version: 2.4.0
Release Date: 2025-01-07

wolfssl.com
github.com/wolfssl

Copyright © 2025 wolfSSL Inc. All Rights Reserved

Description
wolfProvider is an OpenSSL provider backed by wolfSSL’s
wolfCrypt cryptography library. wolfCrypt is FIPS-validated, so
wolfProvider can be used to achieve FIPS compliance with
OpenSSL, all without having to touch OpenSSL code itself.
wolfProvider is structured as a standalone library which links against
wolfSSL (libwolfssl) and OpenSSL.

wolfProvider implements and exposes an OpenSSL provider
implementation which wraps the wolfCrypt native API internally.
Algorithm support matches that as listed on the wolfCrypt is FIPS
140-3 validated, with certificate #4718 and FIPS 140-2 certificate
#3389.

Highlights

● Initialization Mode
○ Dynamic provider loading
○ Static entry point
○ OpenSSL configuration file

● OpenSSL test version
○ 3.0.0
○ 3.0.8

OpenSSL Version Support

Initialization modes can be used with any OpenSSL version that
supports the provider framework. Older versions of OpenSSL use a
similar concept called engines. wolfSSL also offers an engine
backed by wolfCrypt. Please reach out to facts@wolfssl.com if
you’re interested in evaluating the wolfSSL engine.

Features

● Multiple Hash Functions:
○ MD5-1, SHA-1, SHA-2, (SHA-224, SHA-256,

SHA-384, SHA-512), SHA3 (SHA3-224,
SHA3-256, SHA3-384, SHA3-512)

● Block, Stream and Authenticated Cipher
○ AES (128, 192, 256,ECB, CBC, CTR, GCM,

CCM), GMAC, CMAC
● Deterministic Random Bit Generator (DRBG)
● Public Key Algorithms

○ RSA, DH
○ ECC
○ ECDSA, ECDH, Curve (P-192, P-224, P-256,

P-384, P-521)
● Key Derivation

○ HMAC, PBKDF2, HKDF
● RSA and ECC key generation
● TLS PRF

Supported Chipmakers
wolfProvider has support for chipsets including ARM, Intel,
Motorola, NXP/Freescale, Microchip/Atmel, STMicroelectonics,
Analog devices, Texas Instruments, Xilinx SoCs/FPGAs, Renesas,
Espressif and more. If you would like to use or test wolfProvider on
another chipset or environment, let us know and we’ll be happy to
support you.

Supported Operating Environments
Win32/64, Linux, macOS, Solaris, ThreadX, VxWorks, FreeBSD,
NetBSD, OpenBSD, embedded Linux, Yocto Linux,
OpenEmbedded, WinCE, Haiku, OpenWRT, iPhone (iOS), Android,
Nintendo Wii and Gamecube through DevKitPro, QNX, MontaVista,
PetaLinux, Apache Mynewt, PikeOS, Azure Sphere OS

wolfssl.com
github.com/wolfssl

Copyright © 2025 wolfSSL Inc. All Rights Reserved

wolfProvider

wolfSentry is an embedded firewall and IDPS (intrusion detection and
prevention system). At its core, it features an embedded, dynamic
firewall engine, with fast and efficient lookups. wolfSentry is
dynamically configurable, with test-commit se man tic s, and can
easily associate user-defined events with user- defined actions,
contextualized by both built-in and user-defined connection attributes,
tracking the evolution of the network transaction profile. wolfSentry is
fully integrated into the wolfSSL library, as well as wolfMQTT, and
wolfSSH, with optional in-tree call-ins and callbacks that give
application developers turnkey IDP S across all network-facing
wolfSSL product s, with a viable zero-configuration option. These
integrations will be available via simple --enable-wolfsentry configure
options in wolfSSL sibling products.

The wolfSentry engine is dynamically configurable programmatically
through an API, o r from textual inputs supplied to the engine.
Callback and client-server implementations are also un de r
development that will deliver advanced capabilities including remote
logging through MQTT or syslog, and remote configuration and status
queries, all cryptographically secured.

Notably, wolfSentry is designed from the ground up to function well in
resource-constrained, bare-metal, and real time environments, with or
without thread support, using deterministic algorithms that maximize
availability and stay within rigidly designated maximum memory and
scheduling footprints. Use cases include RTOS IDPS, and IDP S for
ARM silicon and other common embedded CPUs and MCUs.
wolfSentry with dynamic firewalling can add as little as 100k to the
code footprint, and 32k to the volatile state footprint, and can fully
leverage the existing logic and state of applications and sibling
libraries.

If you have interest in using wolfSentry or any questions or
comments, please contact wolfSSL at facts@wolfssl.com.

.

wolfSentry Embedded IDPS

Features

● wolfSentry is designed to integrate directly with
network-facing applications/libraries to block bad traffic,
and it can optionally integrate with host firewall
facilities, via plugins.

● It can run on bare metal, in which case the firewall
functions can be directly integrated into the network
stack of the application via patched-in call-ins, or call
backs installed using host environment interfaces.

● Fully extensible
○ a dynamically configurable logic hub
○ user-defined rules link app-defined events with

app-defined actions via plugins
■ plugins can be filters, decision logic,

and/or orchestration logic
○ hub and plugins are mainly keyed on network

attributes, and track current status
○ plugins can also track and use fully

app-defined data for each network association
● Fully integrated into wolfSSL, wolfMQTT, and wolfSSH

○ zero-development IDPS across all
network-facing wolfSSL products, using
bundled COTS plugins

○ zero-configuration option
○ simple --enable-wolfsentry configure options in

wolfSSL sibling products
● Dynamically configurable

○ programmatically through an API
○ textual human-readable configuration files,

loadable/ reloadable at anytime
● Bundled plugins for remote logging, commands, and

status queries, secured with TLS
○ MQTT
○ Syslog
○ SMTP
○ embedded web server with RESTful API

Supported Chipmakers

wolfSSL has support for chipsets including ARM, Intel,
Motorola, mbed, NXP/Freescale, Microchip/Atmel, STMicro,
Analog Devices, Texas Instruments, Xilinx SoCs/FPGAs,
Renesas, Espressif, and more.

If you would like to use or test wolfSSL on another chipset or
OS, let us know and we’ll be happy to support you.

Supported Operating Environments

Win32/64, Linux, macOS, Solaris, ThreadX, VxWorks, FreeBSD, Net
BSD, OpenBSD, e mbe dde d Linux, Yo c to Linu s, OpenEmbedded,
WinCE, Haiku, OpenWRT, iPhone(iOS), Android, Nintendo Wii and
Gamecube through DevKitPro, QNX, MontaVista, OpenCL, NonStop,
TRON/ITRON/µITRON, Cesium, Micrium's µC/OS, FreeRTOS,
SafeRTOS, Freescale MQX, Nucleus, TinyOS, HP/UX, ARC MQX,
TI-RTOS, uTasker, embOS, INtime, Mbed, uT-Kernel, RIOT,
CMSIS-RTOS, FROSTED, GreenHills INTEGRITY, Keil RTX,
TOPPERS, PetaL in us, Apache Mynewt, PikeOS, Deos, Azure Sphere
OS, FreeBSD

wolfssl.com
github.com/wolfssl

Copyright © 2025 wolfSSL Inc. All Rights Reserved

Description

Current Version: 1.6.2
Date: 2024-01-02

Description

wolfEngine is an OpenSSL engine backed by wolfSSL's wolfCrypt
cryptography library. wolfCrypt is FIPS-validated, so wolfEngine can be
used to achieve FIPS compliance with OpenSSL, all without having to
touch the OpenSSL code itself. wolfEngine is structured as a standalone
library which links against wolfSSL (libwolfssl) and OpenSSL.

wolfEngine implements and exposes and OpenSSL engine
implementation which wraps the wolfCrypt native API internally.
Algorithm support matches that as listed on the wolfCrypt is FIPS 140-3
validated, with certificate #4718 and FIPS 140-2 certificate #3389.

Highlights

● Initialization modes
○ Dynamic engine loading
○ Static entry point
○ OpenSSL configuration file

● OpenSSL tested versions
○ 1.0.2h
○ 1.1.1b

Applications that have been successfully compiled using wolfEngine
include OpenSSL Unit Tests, NGINX, cURL, Stunnel, OpenSSH, and
many more.

OpenSSL Version Support

Initialization modes can be used with any OpenSSL version that supports
the engine framework. Engines are deprecated in OpenSSL 3.0.0.
They're replaced with a similar concept called providers. wolfSSL also
offers a provider backed by wolfCrypt. Please reach out to
facts@wolfssl.com if you're interested in evaluating the wolfSSL
provider.

wolfEngine wolfCrypt FIPS engine for OpenSSL

Features

● Multiple Hash Functions:
○ SHA-1, SHA-2 (SHA-224, SHA-256, SHA-384,

SHA-512), SHA3 (SHA3-224, SHA3-256,
SHA3-384, SHA3-512)

● Block, Stream, and Authenticated Ciphers:
○ AES (128, 192, 256, ECB, CBC, CTR, GCM,

CCM), CMAC
● Deterministic Random Bit Generator (DRBG)
● Public Key Algorithms:

○ RSA, DH
● ECC:

○ ECDSA, ECDH, Curve (P-192, P-224, P-256,
P-384, P-521)

● Key Derivation:
○ HMAC, PBKDF2, HKDF

● RSA and ECC Key Generation
● TLS PRF
● SHA-3 support available with OpenSSL versions 1.1.1+.
● EC_KEY_METHOD available with OpenSSL versions

1.1.1+.
● OpenSSL compatibility layer

Supported Operating Environments

Win32/64, Linux, macOS, Solaris, ThreadX, VxWorks, FreeBSD,
NetBSD, OpenBSD, embedded Linux, Yocto Linux, OpenEmbedded,
WinCE, Haiku, OpenWRT, iPhone (iOS), Android, Nintendo Wii and
Gamecube through DevKitPro, QNX, MontaVista, NonStop,
TRON/ITRON/µITRON, Cesium, Micrium µC/OS-III, FreeRTOS,
SafeRTOS, NXP/Freescale MQX, Nucleus, TinyOS, HP/UX, AIX, ARC
MQX, TI-RTOS, uTasker, embOS, INtime, Mbed, uT-Kernel, RIOT,
CMSIS-RTOS, FROSTED, Green Hills INTEGRITY, Keil RTX,
TOPPERS, PetaLinux, Apache Mynewt, PikeOS, Deos, Azure Sphere
OS

wolfssl.com
github.com/wolfssl

Copyright © 2025 wolfSSL Inc. All Rights Reserved

wolfSSL Version 5.7.0
Release Date: 2024-03-20

Supported Chipmakers

wolfEngine has support for chipsets including ARM, Intel,
Motorola, mbed, NXP/Freescale, Microchip/Atmel,
STMicroelectronics, Analog Devices, Texas Instruments,
Xilinx SoCs/FPGAs, Renesas, Espressif and more.

If you would like to use or test wolfEngine on another
chipset or environment, let us know and we’ll be happy to
support you.

Description

The File Encryption application adheres to the requirements of the
software protection profile (SPP) and incorporates mod file
encryption (MOD-FE) capabilities. wolfFE can be used as the
second layer in a dual layer encryption requirement scenario. For
example, if you have full drive encryption, and need to layer in an
additional layer of software encryption, wolfFE is the perfect
solution. The application utilizes the FIPS-validated wolfCrypt AES
GCM encryption/ decryption algorithm to enhance file security with
third-party hardware or software solutions. It provides two API
interfaces:

Int encrypt_file_AesGCM(const char* in_file, const chr* out_file,
const char* key_str, const char* ivv_str)
In decrypt_file_AesGCM(const char* in_file, const char* out_file,
const char* key_str)

The application uses POSIX APIs, a 32-byte key size, and an IV
length of 16 bytes. It is optimized to use a configurable buffer size
to minimize file 1/0 overhead.

When using the encrypt_file_AesGCM() API, the given file will be
encrypted and written to the specified cipher output file. The cipher
output file will have a header at the beginning: WOLFSSL (7
Bytes) magic/ identifier | TAG (16 Bytes) | IV (16 Bytes) | cipher
data (= size of the plain file) …

The decrypt_file_AesGCM() API extracts/ uses the header and
decrypts the cipher data.

The wolfFE application is being evaluated for NIAP certifications,
and once certified, it can be listed in the CSfC program. For
additional information, visit our FAQ page ot contact
facts@wolfssl.com.

wolfFE - File Encryption for support of Double Layer
encryption (CSfC-listed and NIAP-certified)

When encrypting a file, data is read from the file and
processed using read and write buffers before being written
to another file. The size of these buffers is critical for the
encryption speed and overall performance. It is important to
consider factors such as memory fragmentation, MMU
memory alignments, cache utilization, and minimizing OS
overhead to optimize performance. The
MAX_BUFFER_SIZE should be set to a value equal to or
greater than the system’s page size and smaller than the
available system memory for optimal performance. However,
in a bare metal system, you can utilize the maximum
available memory for your buffers to achieve the best
performance. The default buffer size values can be changed
with
CPPFLAGS=”-DMAX_BUFFER_SIZE=8192-DMIN_BUFFER
_SIZE=1024”.

Here’s a plot analyzing Buffer Size and Time Performance of
a 1GByte file on Intel(R) Core(™) i7-9750H CPU @ 2.60GHz

Supported Operating Environments

Linux, VxWorks and can be extended to any other operating
system.

If you would like to test wolfFE on another environment, let us
know and we’ll be happy to support you.

wolfssl.com
github.com/wolfssl

Copyright © 2025 wolfSSL Inc. All Rights Reserved

Supported Chipmakers

wolfFE supports chipsets such as Intel, ARM, and Mac.

If you would like to use or test wolfFE on another chipset,
let us know and we’ll be happy to support you.

Description

The wolfEntropy library is a software-based source of
entropy that utilized timing jitter variations of memory
accesses in different cache levels to derive entropy.
wolfEntropy was built from scratch by the wolfSSL team.
This source of entropy has been available since the
release of wolfSSL v5.5.4. You no longer need to redesign
your hardware to include hardware based entropy. A high
performance software entropy source is available now!

It is designed to fully conform with SP800-90B. SP800-90B
is a publication by the National Institute of Standards and
Technology (NIST) that specifies the requirements for
entropy sources including continuous testing and entropy
estimation. In order to generate random numbers that are
suitable for cryptographic use, a true random number
generator is required.

The wolfEntropy library source is being tested to ensure
that it fulfills the requirements of a FIPS 140-3 entropy
source, as defined in the publication, and will soon go
through FIPS 140-3 Entropy Source Validation Testing
(ESVT). For additional information, visit our FIPS FAQ
page or contact fips@wolfssl.com.

wolfEntropy SP 800-90B Software TRNG Source

Features

When wolfSSL is build with the configuration flag ./configure
–enable-mem-use and the built-in random number generator
(RNG) is used, the HASH_DRBG will make use of
wc_Entropy_Get() to obtain a seed source. Here is a block
diagram illustrating the operation of the entropy source.

Supported Operating Environments

Linux or Bare Metal (Support for others available on demand)

If you would like to test wolfEntropy on another environment,
let us know and we’ll be happy to support you.

wolfssl.com
github.com/wolfssl

Copyright © 2025 wolfSSL Inc. All Rights Reserved

Supported Chipmakers

wolfEntropy supports various chipsets including Intel, RISC-V
and ARM, with high-resolution time counters. The wolfSSL team
can add support for other chips on demand.

If you would like to use or test wolfEntropy on another chipset,
let us know and we’ll be happy to support you.

wolfSSL Version 5.7.0

wolfSSL, provider of the most popular embedded cryptography with over 2 Billion devices secured, is adding support for
complete RTCA DO-178C level A certification. wolfSSL will offer DO-178 wolfCrypt as a commercial off-the-shelf (COTS)
solution for connected avionics applications. Adherence to DO-178C level A will be supported through the first wolfCrypt COTS
DO-178C certification kit release that includes traceable artifacts for the following encryption algorithms:

● SHA-256 for message digest.
● AES for encryption and decryption.
● RSA to sign and verify a message.
● chacha20_poly1305 for authenticated encryption and decryption
● ECC to sign, verify and share secrets
● HMAC for keyed-hashing for message authentication
● A certificate revocation list (CRL)

The primary goal of this initial release is to provide the proper cryptographic underpinnings for secure boot and secure
firmware update in commercial and military avionics. wolfSSL brings trusted, military-grade security to connected commercial
and military aircraft. Avionics developers now have a flexible, compact, economical, high-Performance COTS solution for
quickly delivering enhanced, secure communications that can be readily certified to DO-178. In addition, FIPS 140-3 and FIPS
140-2 validated crypto algorithms can be used in DO 178 mode for combined FIPS 140-3, FIPS 140-2/DO 178 consumption.
The wolfCrypt cryptography library has been FIPS 140-3 validated, with certificate #4718, FIPS 140-2 validated (Certificate’s
#2425 and #3389). For additional information contact fips@wolfssl.com.

Optimization Support

We understand that securely rebooting avionic systems has rigorous performance requirements. As such, we’re here to help
with cryptographic performance optimizations through our services organization.

Release Plan

● Basic crypto for secure boot and secure firmware updates – Available Now!
● wolfBoot Secure Boot – Q1, 2023
● wolfDTLS – Q3, 2024
● More wolfCrypt algorithms on demand

wolfSSL Adds Support for DO-178 DAL A

Supported Chipmakers

● wolfCrypt has support for chipsets including ARM, Intel,
Motorola, mbed, NXP/Freescale, Microchip/Atmel,
STMicro, Analog Devices, Texas Instruments, and more.

● If you would like to use or test wolfSSL on another chipset,
let us know and we’ll be happy to support you.

Supported Operating Environments

Win32/64, Linux, macOS, Solaris, ThreadX, VxWorks, FreeBSD,
NetBSD, OpenBSD, embedded Linux, WinCE, Haiku, OpenWRT,
iPhone (iOS), Android, Nintendo Wii and Gamecube through
DevKitPro, QNX, MontaVista, OpenCL, NonStop,
TRON/ITRON/µITRON, Cesium, Micrium's µC/OS, FreeRTOS,
SafeRTOS, Freescale MQX, Nucleus, TinyOS, HP/UX, ARC
MQX, TI-RTOS, uTasker, embOS, INtime, Mbed, uT-Kernel,
RIOT, CMSIS-RTOS, FROSTED, Green Hills INTEGRITY, Keil
RTX, TOPPERS, PikeOS

wolfssl.com
github.com/wolfssl

Copyright © 2025 wolfSSL Inc. All Rights Reserved

Enabling Secure Boot & Secure Firmware Update for Avionics

mailto:fips@wolfssl.com

Overview

cURL is an open-source command line tool and library written in C with over 5 billion installations worldwide. cURL is used in
command lines or scripts to transfer data. It is also used in cars, television sets, routers, printers, audio equipment, mobile phones,
tablets, set-top boxes, and media players, and is the internet transfer backbone for thousands of software applications affecting
billions of humans every day. The cURL software project provides a library for transferring data using various protocols. These
protocols include (but are not limited to) FTP, FTPS, HTTP, HTTPS and more.

cURL Command Line Tool & Library

wolfssl.com
github.com/wolfssl

Copyright © 2025 wolfSSL Inc. All Rights Reserved

Usage
cURL can be used in multiple different ways depending on the
desired end result. curl is ideal for secure data transfer. It allows
enterprise customers to securely transfer critical business
information between users, locations and partners in compliance
with data security regulations such as HIPAA, PCI DSS and the EU’s
GDPR. If the user wants to have a task that repetitively checks the
status of a server’s HTTP/SSH processes, it can be used to securely
download .zip files through a proxy, it has the ability to do this as
well.

tinycurl
For resource constrained and embedded users, wolfSSL has
created tinycurl! tinycurl is a version of curl that is capable of
performing HTTPS and fits within 100K (including the wolfSSL
library) on a typical 32-bit architecture. It is approximately
one-quarter of the size of the typical curl build on Debian-based
Linux with an x86-64 architecture.

Highlights

● Commercial support offered
● Can be built with wolfCrypt FIPS 140-3

validated, with certificate #4718 and FIPS
140-2/140-3 and FIPS ready

● Optimization support and consulting offered
● Custom cURL builds available
● cURL subscription packages available
● cURL origional author and founder, Daniel

Stenberg, part of the wolfSSL team
● Auditable file transfer
● Precision file transfer protocols
● Verbose output options
● Backward compatability
● Platform agnostic
● High performance data transfers
● Customizable feature set
● Extensive documentation
● Open source
● Foundation of support and consulting

provided by origional
● cURL author and founder
● Available for dual-licensing

Support Page: www.wolfssl.com/products/support-packages/
Product Page: www.wolfssl.com/products/curl/
GitHub location: github.com/curl/curl

Subscription Packages
cURL subscription packages make it easier than ever to use
cURL, libcurl, and tiny-curl in non-traditional, embedded, or
challenging environments. Includes support for:

● Non-mainstream operating systems
● Embedded and RTOS environments
● Security and application integrations

Supported Protocols
MQTT, DICT, FILE, FTP, FTPS, GOPHER, HTTP, HTTPS,
IMAP, IMAPS, LDAP, LDAPS,POP3, POP3S, RTMP, RTSP,
SCP, SFTP, SMB, SMBS, SMTP, SMTPS, TELNET, TFTP, and
more.
For more information on using cURL with your project, please
contact support@wolfssl.com.

Description

The wolfSSL library includes a sniffer with TLS 1.3 support. The wolfSSL sniffer can be used to passively sniff SSL/TLS traffic including
https traffic. wolfSSL supports industry standards up to the current TLS 1.3, for which we were the first commercial implementation. Our
sniffer users benefit from this compatibility with the latest TLS protocol.

For TLS v1.3, all cipher suites use a new ephemeral key for each new session. In order to solve this, we added a “static ephemeral”
feature, which allows setting a known key that is used for deriving a shared secret. The key can be rolled periodically and synchronized
for internal or test environments. We also have created a Key Manager for secure distribution of ephemeral keys based on the ETSI TS
103 523-3 specification.

wolfSSL TLS 1.3 Sniffer

Advantages of TLS 1.3

wolfSSL supports TLS1.3 on both client and server side. There
are many benefits in changing to the newest version of the TLS
specification, including:

● Quicker connection times (reduced round-trips during the
handshake)

● Reduced latency
● Improved session resumption
● More secure crypto by default
● Check out the TLS 1.3 documentation on our website

for more information

More info
The wolfSSL sniffer requires the wolfSSL library version 1.8.0 or later. The TLS v1.3 sniffer support was added in v4.6.0 or later. The
latest release can be obtained from http://www.wolfssl.com/download. To evaluate our Key Manager go to
https://github.com/wolfSSL/wolfKeyMgr.

wolfSSL is powered by the wolfCrypt library. wolfCrypt is FIPS 140-3 validated, with certificate #4718 and FIPS 140-2 Level 1
validated, with certificate #3389. For additional information, visit our FIPS FAQ page or contact fips@wolfssl.com.

 wolfSSL supports the C programming language as a primary interface, as well as several other host languages including Java (wolfSSL
JNI), C# (wolfSSL C#), Python (wolfSSL Python), Ada and PHP and Perl (through a SWIG interface). If you have interest in using
wolfSSL and our TLS 1.3 sniffer in another programming language that it does not currently support, please contact wolfSSL at
facts@wolfssl.com.

For a list of supported operating systems and chipmakers, visit our product page.

wolfssl.com
github.com/wolfssl

Copyright © 2025 wolfSSL Inc. All Rights Reserved

Sniffer Features

● Capture and decrypt live or recorded PCAP traces
when at least one of the keys is known

● Allows Perfect Forward Secrecy (PFS) ciphers with
TLS v1.3

● Includes a test application snifftest
● The wolfSSL sniffer can be integrated into any

application using the existing sniffer API. Only five
calls are required making it easy to integrate into any
project.

● Assembly math enabled for optimized performance
● Ability to decrypt multiple packet streams on different

threads

mailto:fips@wolfssl.com
mailto:facts@wolfssl.com

The wolfSSL lightweight SSL/TLS library supports TLS 1.3 (RFC 8446) on both client and server side!

To compile wolfSSL with TLS 1.3 support, use the “--enable-tls13” configure option:

TLS 1.3 Now Available in wolfSSL

Learn more

For more information on using wolfSSL with TLS 1.3, or to evaluate it, please contact us at facts@wolfssl.com.
Please send any comments or feedback on wolfSSL TLS 1.3 support to support@wolfssl.com. Thank you!

wolfssl.com
github.com/wolfssl

Copyright © 2025 wolfSSL Inc. All Rights Reserved

Lightweight SSL/TLS library supporting TLS 1.3

$ unzip wolfssl-X.X.X.zip
$ cd wolfssl-X.X.X
$./configure --enable-tls13
$ make

wolfSSL has two client and server side methods, which can be used to specify
TLS1.3 during creation of a wolfSSL context (WOLFSSL_CTX):

WOLFSSL_METHOD* wolfTLSv1_3_server_method(void);
WOLFSSL_METHOD* wolfTLSv1_3_client_method(void);

The wolfSSL example client and server can be used to easily test TLS1.3 functionality. For example, to connect
the wolfSSL example client and server to each other using TLS1.3 and the TLS1.3-AES128-GCM-SHA256
cipher suite, use the “ -v” option with “4” to specify TLS1.3, and the “-l” option to specify the cipher suite:

$./examples/server/server -v 4 -l TLS13-AES128-GCM-SHA256
$./examples/client/client -v 4 -l TLS13-AES128-GCM-SHA256

Alternatively, the example client can be used to connect to an external server. For example, to connect to the
wolfSSL website using TLS 1.3:

$./examples/client/client -v 4 -l TLS13-AES128-GCM-SHA256 \
-h www.wolfssl.com -p 443 -g -A ./certs/wolfssl-website-ca.pem

In thi s command, “-h” specifies the host, “-p” the port, “-g” causes the client to send an HTTP GET request, and
“-A” specifies the CA certificate used to authenticate the server.

wolfSSL currently supports the following TLS 1.3 cipher suites:

TLS13-AES128-GCM-SHA256
TLS13-AES256-GCM-SHA384
TLS13-CHACHA20-POLY1305-SHA256
TLS13-AES128-CCM-SHA256
TLS13-AES128-CCM-8-SHA256

The wolfSSL library is now safe against the “Harvest Now, Decrypt Later” post-quantum threat model with the addition of our new
TLS 1.3 post-quantum groups.

Hybrid Post Quantum Groups in TLS 1.3
Recently, we announced our own implementations and we have completed hybridization of our ML-KEM with NIST-standardized
ECDSA components to continue future-proofing encrypted data streams. These hybridized algorithms continue to be FIPS
compliant under the current NIST standards.

One approach we are taking involves hybridizing post-quantum algorithms with cryptographic algorithms that we already trust.
ECC with NIST standardized curves seem like good candidates, especially since continued FIPS 140-3 compliance is a priority.

To achieve hybridization, we followed the following design:

● The client’s key share is the classical public key concatenated with the post-quantum public key.
● The server’s key share is the classical public key concatenated with the post-quantum ciphertext.
● The shared secret is the classical shared secret concatenated with the post-quantum shared secret.

Post Quantum cURL
wolfSSL is developing a test for post-quantum cURL to make cURL resistant to “harvest now; decrypt later” attacks from a future
quantum-enabled adversary. This protection is important if you value confidentiality over the long term. This effort involves
enabling the use of the new post- quantum groups for TLS 1.3 in cURL when built with wolfSSL.

Research Results from the pq-wolfssl Team
The pq-wolfssl development team has done an excellent experimental post-quantum integration, published in their paper “Mixed
Certificate Chains for the Transition to Post-Quantum Authentication in TLS 1.3”.

In the paper, the team “selected the open source TLS library wolfSSL (v4.7.0) for our integrations of PQC, because it is suitable
for embedded systems and supports TLS 1.3.”

Post-Quantum wolfSSL

Learn more
For more information on wolfSSL post-quantum projects, please contact us at facts@wolfssl.com.
Please send any comments or feedback to support@wolfssl.com. Thank you!

wolfssl.com
github.com/wolfssl

Copyright © 2025 wolfSSL Inc. All Rights Reserved

mailto:facts@wolfssl.com

The Need – FIPS and FedRAMP

Entropy is crucial to information security. Regulators are
fully aware that broken entropy means broken
encryption and stolen information. As such, entropy
assurance from cryptography regulators and labs is
becoming more and more stringent, and rightfully so.
Projects are now expected to take their entropy
assurance to a higher level, and wolfRand is here to
help.

wolfRand Description

● 256-bit security strength SP800-90B NDRBG
● FIPS 140-2 cryptographic module suitable for

key generation
● Drop-in replacement for /dev/random or

/dev/urandom to seed a secondary DRBG
● Conformant to SP 800-90B
● Uses native CPU hardware for strong entropy

(available for Intel CPU families with RDSEED)
but can be used in conjunction with “software
only” validations.

Also includes HMAC-SHA-256 and SHA-256
services

wolfRand Qualified Entropy Source
For Linux/Intel Operating Environments
Release Date January 2020

wolfssl.com
github.com/wolfssl

Copyright © 2025 wolfSSL Inc. All Rights Reserved

Q: Why is regulatory assurance of sufficient entropy hard?
 A: Careful, rigorous entropy assessment requires in depth knowledge of the entropy source design and its
properties. The analysis must justify a claim for minimum entropy that is supported by design characteristics and
by statistical analysis of the raw (unprocessed) output of the source of randomness. The skill set required to
perform this analysis well is a rare commodity. Entropy source design information is hard to obtain. An entropy
source must be instrumented to permit gathering raw output of samples for statistical testing. Together, these
factors have led to a significant increase in effort when assurance of randomness (minimum entropy) is a
regulatory goal.

Q: Why is regulatory assurance of sufficient entropy “about to get even harder”?
A: The introduction of FIPS 140-2 Implementation Guidance articles 7.14 and 7.15 put in place broad guidelines
for validation laboratory assessment of entropy, significantly increasing the rigor of entropy assessment. The
publication of SP 800-90B Recommendation for the Entropy Sources Used for Random Bit Generation has
provided a more consistent framework for designers and evaluators of entropy sources to use, but this
standardization push has again raised the bar for evaluation of entropy sources. The May 2019 introduction of
FIPS 140-2 Implementation Guidance article 7.18 Entropy Estimation and Compliance with SP 800-90B
mandates conformance to SP 800-90B by November 2020.

FAQ

1/2

Q: What is a qualified entropy source?

A: wolfRand is a FIPS module that includes a hardware entropy source used for seeding material to
a FIPS approved SP800-90A DRBG. The wolfRand DRBG output can be used for key generation
directly or to create seeding material for another DRBG. The entropy rationale for wolfRand has
been reviewed by the CMVP during the FIPS validation process.

Q: When is a qualified entropy source helpful?

A: Common Criteria evaluations require entropy rationale. FIPS 140-2 validations require entropy
rationale when the source of entropy is within the cryptographic boundary. FedRAMP reviews are
expected to evaluate entropy in greater detail as additional experience is gained by the auditors.
wolfRand, as a qualified entropy source, eliminates or simplifies the entropy rationale effort. If you
will be asked to provide an entropy rationale in the future, then a qualified entropy source will make
your life better.

 Q: Will the wolfRand FIPS 140-2 certificate have one of the following caveats?

 •No assurance of the minimum strength of generated keys.

•The module generates cryptographic keys whose strengths are modified by available entropy.

A: Most FIPS software modules rely on an entropy source external to the module (for example,
/dev/random or /dev/urandom). wolfRand includes the hardware entropy source as part of the
module. This eliminates the problem of understanding the strength of external entropy sources. The
wolfRand FIPS module will not require either of the caveats above.

 •Implementations vary widely from release to release • Complex analysis

 Q: What are the supported Tested Configurations for wolfRand?

A: wolfRand has been tested on Linux 4.4 (Ubuntu 16.04 LTS) with an Intel® Core™ i5-5300U
CPU. Additional configurations may be added to the wolfRand FIPS certificate based on demand
and the suitability of the hardware entropy source.

 Q: When will the wolfRand FIPS certificate be posted on the NIST website?

A: The wolfRand FIPS certificate is expected in January 2020.

Copyright © 2025 wolfSSL Inc. All Rights Reserved

wolfssl.com
github.com/wolfssl 2/2

wolfSSL Kyber ML-KEM implementation is now included for commercial customers. Future Proofing is here today. We are now including
commercial Kyber/ML-KEM in our wolfSSL/wolfCrypt commercial packages.

Kyber ML-KEM

Post-Quantum Kyber Benchmarks (MacOS)

Platform:
Apple MacBook Pro 18,3 with an Apple M1 Pro, 3.09 GHz processor

Notes:
- Only 1 core is used

Post-Quantum Kyber Benchmarks (Linux)

Platform:
11th Gen Intel® Core™ i7-1185G7 @ 3.00GHz × 8

Notes:
- Only 1 core is used
- Conventional algorithms are present for comparison

purposes
- The wolfSSL configuration used was:

./configure --disable-psk --disable-shared --enable-intelasm
 --enable-aesni --enable-sp --enable-sp-math
--enable-sp-asm
 --enable-kyber=wolfssl,all 'CFLAGS=-Os
-DECC_USER_CURVES -DHAVE_ECC256
 -DHAVE_ECC384'

Post-Quantum Kyber Benchmarks (ARM Cortex-M4)

Platform:
STM NUCLEO-F446ZE

Notes:
- The HCLK in the project was set to 168MHz
- Only 1 core used
- wolfSSL Math Configuration set to “Single Precision ASM

Cortex-M3+ Math”
- Optimization flag: -Ofast
- Conventional algorithm are present for comparison purposes

wolfssl.com
github.com/wolfssl

Copyright © 2024 wolfSSL Inc. All Rights Reserved

wolfCrypt FIPS 140-3 Cryptographic Module

FIPS 140-3 Overview

Federal departments and agencies using
cryptographic-based security systems to protect
sensitive (but unclassified) information are required
to implement FIPS 140-3 cryptographic modules. The
FIPS 140-3 standard specifies the security
requirements for cryptographic modules.

Technology vendors are locked out of serving the
federal space (or they place their customers at risk) if
they do not have an associated FIPS 140-3 certificate
for their cryptographic products.

Accelerate Your FIPS 140-3 Project

wolfCrypt is a cryptographic software API library.
Your applications may rely on wolfCrypt to provide all
of the cryptographic processing. Instead of
performing your own FIPS validation, you may claim
that you are using an embedded FIPS cryptographic
module. This strategy reduces costs, reduces risks,
and accelerates your time-to-market. This will make
your Federal customers happy.

wolfCrypt is compliant with FIPS 140-3
Validated,Certificate #4718, Implementation
Guidance 10.2.A. The library runs the power-on
self-tests automatically with use of a default entry
point. The FIPS OpenSSL module does not provide a
default entry point.

The wolfSSL team has the FIPS expertise you need.
We will form a FIPS strategy that is best for you.
Before you search for a FIPS Consultant or begin
calling several of the 23 FIPS Laboratories, contact us.
We can save you time, money, and effort.

Algorithm Description

AES [FIPS 197, SP 800-38A, SP 800-38B, SP 800-38C, SP
800-38D SP 800-38E]
Functions: Encryption, Decryption
Modes: CBC, CTR, CCM, CMAC, GCM, OFB, ECB, XTS
Key sizes: 128, 192, 256 bits

DRBG [SP 800-90A]
Functions: Hash DRBG
Security Strength: 256 bits

ECDHE

DHE

[FIPS 186-4, RFC7919]
Functions: Shared Secret Generation (KAS-SSC-FFC,
KAS-SSC-ECC)
FFC groups: ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144,
ffdhe8192
ECC curves: P-224, P-256, P-384, P-521

ECDSA [FIPS 186-4]
Functions: Key Generation, Signature Generation,
Signature Verification
SHA sizes: SHA-1 (verification only), SHA2-224, SHA2-256,
SHA2-384, SHA2-512, SHA3-224, SHA3-256, SHA3-384,
SHA3-512
Curves: P224, P256, P384, P521

RSA [FIPS 186-4, PKCS #1 v2.1 (PKCS1.5), PSS]
Functions: Key Generation, Signature Generation,
Signature Verification
SHA sizes: SHA-1 (verification only) SHA2-224, SHA2-256,
SHA2-384, SHA2-512, SHA3-224, SHA3-256, SHA3-384,
SHA3-512
Key sizes: 1024 (verification only), 2048, 3072, 4096

HMAC [FIPS 198-1]
Functions: Generation, Verification
SHA sizes: SHA-1 (verification only), SHA2-224, SHA2-256,
SHA2-384, SHA3-224, SHA3-256, SHA3-384, SHA3-512

SHA [FIPS 180-4, FIPS 202]
Functions: Message Digest, Secure Hash
SHA sizes: SHA-1, SHA2-224, SHA2-256, SHA2-384,
SHA2-512, SHA3-224, SHA3-256, SHA3-384, SHA3-512

TLS KDF
TLSv1.3 KDF
SSHv2 KDF

[SP 800-135, RFC7627, RFC8446]
Functions: Key-Derivation Functions
SHA sizes: SHA-1, SHA2-224, SHA2-256, SHA2-384,
SHA2-512, SHA3-224, SHA3-256, SHA3-384, SHA3-512

FIPS 140-3 Validated, Certificate #4718

wolfSSL FIPS Services
- Rebranding of the wolfCrypt FIPS certificate
- Expanded FIPS 140-3 validations (e.g., Level 2, 3, 4)
- Testing of new Operating Environments
- Do you have FIPS 140-3 questions? Give us a test

drive by contacting fips@wolfSSL.com

Copyright © 2025 wolfSSL Inc. All Rights Reserved

wolfssl.com
github.com/wolfssl

Upcoming efforts:
New module to include SRTP-KDF, AES-GCM Streaming
service, AES-CFB (1, 8, 128), AES-XTS (256, 512), AES-KW,
PBKDF2, FIPS 186-5, EDDSA (448, 25519), SHAKE (128,
256)

FIPS Post Quantum for NSA 2.0 by 2028!

wolfHSM

Copyright © 2025 wolfSSL Inc. All Rights Reserved

wolfssl.com
github.com/wolfssl

Description

Automotive HSMs (Hardware Security Modules) dramatically
improve the security of cryptographic keys and cryptographic
processing by isolating signature verification and
cryptographic execution, which are the core of security, into
physically independent processors. Automotive HSMs are
mandatory or strongly recommended for ECU’s that require
robust security. With this in mind, wolfSSL has ported our
popular, well tested, and industry leading cryptographic
library to run in popular Automotive HSMs like Aurix Tricore
TC3XX and SPC58NN. However, this is not tied to any
specific HSM hardware.

wolfHSM provides a portable and open-source abstraction to
hardware cryptography, non-volatile memory, and isolated
secure processing that maximizes security and performance
for ECUs. By integrating the wolfCrypt software crypto
engine on hardware HSM’s like Infineon Aurix Tricore
TC3XX, Chinese mandated government algorithms like
SM2, SM3, SM4 are available. Additionally, Post Quantum
Cryptography algos like Kyber, LMS, XMSS and others are
easily made available to automotive users to meet customer
requirements. At the same time, when hardware
cryptographic processing is available on the HSM, we
consume it to enhance performance.

Developers will also be able to run wolfHSM in a POSIX
simulator for desktop prototyping without any hardware, thus
providing true portability and rapid deployment on any
hardware.

wolfBoot is a mature and portable secure bootloader solution
designed for bare-metal bootloaders and equipped with
failsafe NVM controls. It offers comprehensive firmware
authentication and update mechanisms, leveraging a
minimalistic design and a tiny HAL API, which makes it fully
independent from any operating system or bare-metal
application. wolfBoot manages the flash interface and
pre-boot environment, accurately measures and
authenticates applications, and utilizes low-level hardware
cryptography as needed. wolfBoot can use the wolfHSM
client to support HSM-assisted application core secure boot.
Additionally, wolfBoot can run on the HSM core to ensure the
HSM server is intact, offering a secondary layer protection.
This setup ensures a secure boot sequence, aligning well
with the booting processes of HSM cores that rely on NVM
support.

Features

● Extensibility of cryptographic algorithms
● Consistency with security functions
● Integration with Autosar
● Integration with SHE+
● Direct usage of HSM from wolfCrypt’s

externalized API’s
● PKCS11 interface available
● TPM 2.0 interface available
● Secure OnBoard Communication (SecOC)

module integration available
● Certificate handling available
● Symmetric and Asymmetric keys and

cryptography
● Customization available
● FIPS 140-3 and DO-178C available

Supported Operating Environments and Chipmakers
wolfHSM operates wherever wolfSSL is supported.

Supported HSM’s

● Infineon Aurix TC3xx
● Infineon Aurix TC4x (Coming soon)
● Infineon Traveo T2G (Coming soon)
● ST SPC58NN
● Renesas RH850 (Coming soon)
● Renesas RL78 (Coming soon)

Learn more
For more information on wolfHSM, please contact us at facts@wolfssl.com.

mailto:facts@wolfssl.com

wolfSSL Cybersecure and Compliant Satellite
Communication with full FIPS 140-3 and CNSA 2.0
Support

Copyright © 2025 wolfSSL Inc. All Rights Reserved

wolfssl.com
github.com/wolfssl

wolfSSL empowers developers of satellite applications with a robust and secure cryptographic solution that meets the demanding
requirements of spaceborne systems. Our products, wolfSSL and wolfCrypt, offer a unique combination of FIPS 140-3 validation
and CNSA 2.0 support, ensuring the highest levels of cryptographic security for your critical satellite communication.

Unparalleled Security for Demanding Environments:

● FIPS 140-3 Validation: wolfCrypt holds the world's first SP800-140Br1 validated FIPS 140-3 certificate (#4718). This
rigorous validation guarantees the cryptographic module security, crucial for protecting sensitive satellite data from
unauthorized access or manipulation.

● CNSA 2.0 Support: wolfSSL prepares you for the future with support for CNSA 2.0's post-quantum cryptography (PQC)
algorithms. These advanced algorithms safeguard against potential attacks from quantum computers, a growing threat to
traditional cryptography.

● Proven: Used by top providers in all parts of the satellite industry; from space vehicles to on the ground systems
including launch.

● Extensive Environment Support: Full FIPS and CNSA support for all of the hardware and OS’s used in the satellite
industry.

Advantages for Satellite Applications:

● Enhanced Security for Sensitive Data: wolfSSL ensures the confidentiality and integrity of critical satellite data, such
as telemetry, command and control information, and scientific observations. This is vital for missions ranging from
national security to environmental monitoring.

● Reduced Risk of System Compromise: Full FIPS-validated cryptography and PQC support significantly reduce the risk
of unauthorized access to your satellite systems, protecting them from cyberattacks and potential disruptions.

● Compliance with Evolving Security Standards: wolfSSL helps you stay ahead of the curve by adhering to both FIPS
140-3 and CNSA 2.0, which are increasingly being mandated for government and defense satellite programs.

● Lightweight and Efficient: wolfSSL is known for its small footprint and efficient resource utilization. This is critical for
resource-constrained satellite environments where power and processing power are limited.

Additional Benefits:

● Simplified Development: Achieve compliance with both FIPS 140-3 and CNSA 2.0 through a single, secure TLS 1.3
connection. This streamlines development and reduces integration time.

● Long-Term Security: PQC algorithms prepare your satellite systems for the potential challenges of quantum computing,
ensuring continued secure communication well into the future.

● Expert Support: wolfSSL's team of security professionals offers guidance and support in achieving FIPS 140-3 and
CNSA 2.0 compliance within your satellite applications.

Conclusion:

By choosing wolfSSL, you gain a powerful and secure cryptographic foundation for your satellite applications. With FIPS 140-3
validation and CNSA 2.0 support, wolfSSL empowers you to meet the most stringent security requirements while ensuring
efficient resource utilization in the demanding space environment.

Contact wolfSSL Today:

For further inquiries or to explore how wolfSSL can elevate the security and compliance of your satellite communication, contact
our team at facts@wolfSSL.com or +1 425 245 8247.

