GG-GIESSTECHNIK GmbH & Co. KG GG-GIESSTECHNIK

GG-GIESSTECHNIK

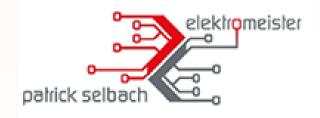
welchen wir nicht gebrauchen könner

Die Firma GG-GIESSTECHNIK GmbH & Co.KG mit Sitz in Nümbrecht kann helfen Projekte zu realisieren, Produktivität und Flexibilität von nationaler und internationaler Produktion zu verbessern.

Dies geschieht durch Gestaltung der Fertigungsstruktur, der Technik und der Abläufe bestehender Anlagen und Neuanlagen im Bereich Leichtmetall, im Speziellen Magnesium und Zink. Wir unterstützen dabei mit guten Ideen und einer professionellen Umsetzung.

Stärken

Wir sind ein kleines Team, welches aus Spezialisten im Bereich Metallurgie, Know-how und erfinderischem Geist besteht.


Wir gehen immer einen Schritt weiter, unsere Anlagentechnologie verbessert sich täglich. Wir sind national sowie international in allen Branchen tätig.

Pumpentechnik

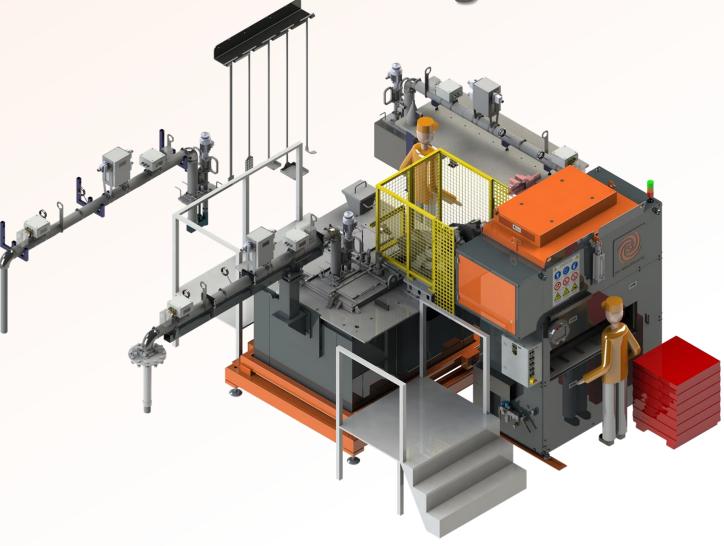
Dosiertechnik

Transfertechnik

Tiegel

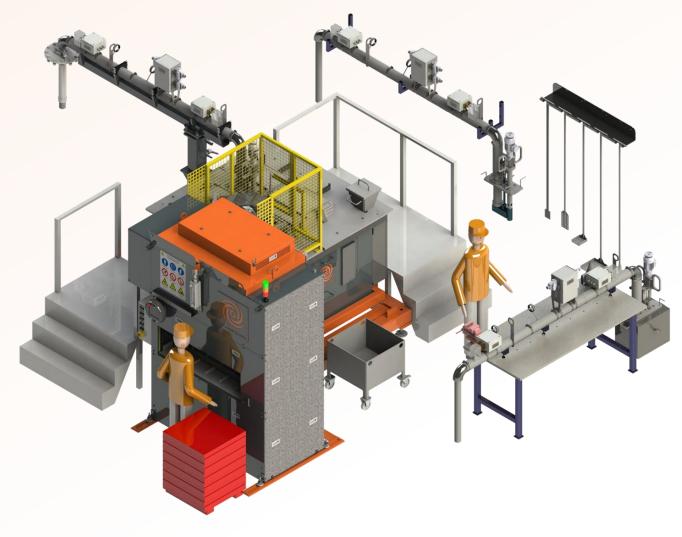
Leistungen

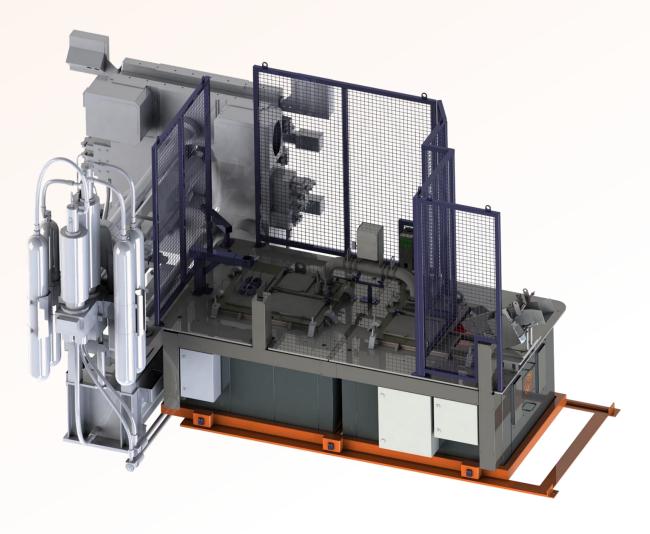
Ersatzteile

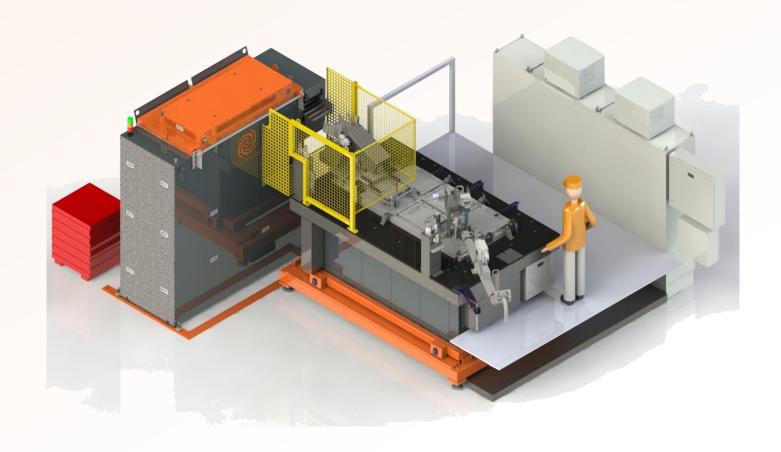

Gesamtanlagen

Prozess-Optimierung

Sonderlösungen



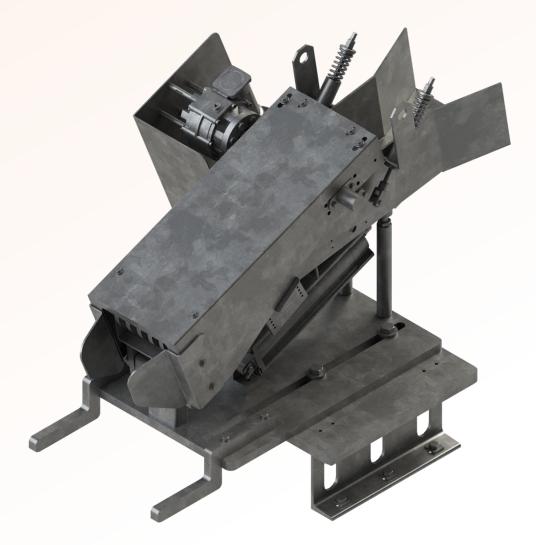




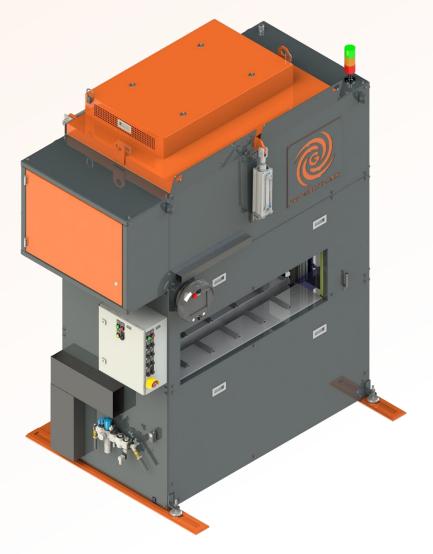
Diverse Tiegel aus 1.4521

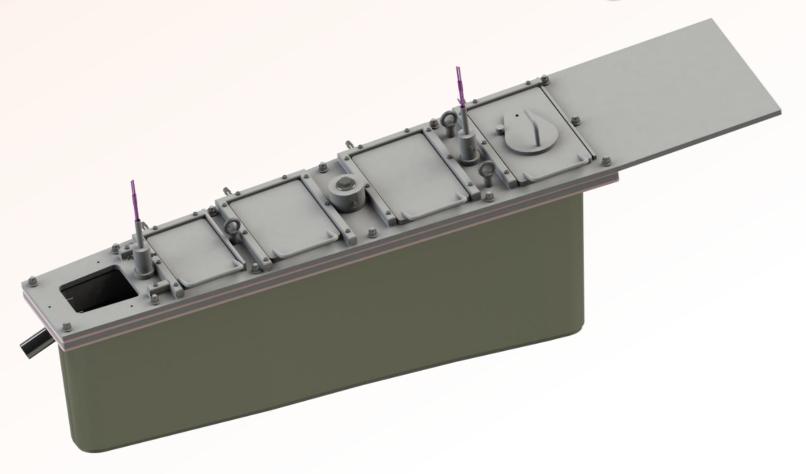
		rkstoffe für Magnesium- Schmelz- und Do		
Europäische Norm (EN)	1.4521	1.4828	Kesselblech HI plattiert mit 1.4828	
US-Norm (ASTM)	444 Y20-14-7140-0	309		
Kurzname	X2CrMoTi18-2 Chrom 17-20%, Molybdän 1,8-2,5%, Titan	X15CrNiSi20-12	Außenmantel wie 1.4828, innen niedriglegierter	
Zusammensetzung	4x(C+N)+0,15%; Silizium max. 1%, Mangan max. 1%, Kohlenstoff max. 0,025%	Chrom 19-21%, Nickel 11-13%, Silizium 1,5-2,0%, Mangan max. 2%, Kohlenstoff max. 0,2%	Kesselblechstahl (z.B. Hl bzw. 1.0345 mit Mangan 0,40-1,40%))	
Grundgefüge	ferritisch	austenitisch	Außenmantel austenitisch, Grundwerkstoff ferritisch	
Besonderheiten	nickelfrei!, ca. 2% Molybdän, sehr niedriger Kohlenstoff (gut umformbar); Gefüge stabilisiert durch Titan und/oder Niob	hoher Nickelgehalt, daher für Schmelz- und Dosieröfen in Gießereien nicht verwendbar! (s.a. unten in Zeile "Anmerkungen")		
typische Wandstärken	15 mm für Tiegel bis max. 1000 kg Magnesium, 20 mm für Tiegel mit bis zu 3000 kg Magnesium	15 mm für Tiegel bis max. 1000 kg Magnesium, 20 mm für Tiegel mit bis zu 3000 kg Magnesium	18 mm Kesselblech + 4 mm 1.4828 für Tiegel bis max. 1000 kg Magnesium, analog 24 + 6 mm für Tiegel mit bis zu 3000 kg Magnesium	
allgemeine Korrosionsbeständigkeit	sehr gut; es liegt hauptsächlich am Chromgehalt, dass Edelstähle korrosionsbeständig sind. Der zusätzlich Molybdängehalt erhöht noch wesentlich die Korrosionbeständigkeit, da 1% Molybdän wirkt wie 3,3% Chrom (s. "Wirksumme W"), jedoch ohne die negativen Auswirkungen (Versprödung) eines hohen Chromgehalts. Der 1.4521 ist sowohl gegen schwefel- als auch fluorhältige Gase beständig.	im allgemeinen auch gut, jedoch erfolgt wegen des hohen Nickelgehaltes bei hohen Temperaturen ein Angriff durch schwefelhältige Gase (z.B. SO2 Schutzgas) durch Bildung von niedrigschmelzenden Ni-S Verbindungen. Anm.: entgegen der landläufigen Meinung trägt der hohe Nickelgehalt bei den Austeniten nichts zur Korrosionsbeständigkeit bei, er bewirkt in erster Linie ein hohes Verformungs-vermögen indem das Nickel die dehnbare kubisch flächenzentrierte Gitterstruktur auch bei tiefen Temperaturen stabilisert. Dies ist für die Verwendung als Tiegel in Magnesiumöfen irrelevant.	außen wie 1.4828; inneres Kesselblech jedoch schlecht, insbesondere kommt es v.a. mit fluorhältigen Schutzgasen über der Schmelze zur Flußsäurebildung, welche das innere Kesselblech sehr schnell angreift. (s.a. unten in Zeile "Anmerkungen")	
Zunderbeständigkeit	gut, v.a. wegen Molybdängehalt, aber auch weil Silizium vorhanden ist	gut wegen Siliziumgehalt	Außenmantel s. 1.4828; das innere Kesselblech ist nicht zunderbeständig	
mechanische Eigenschaften	gut; 0,2% Dehngrenze höher und Zugfestigkeit etwas niedriger als bei 1.4828; Bruchdehnung ca. 20%.	gut; 0,2% Dehngrenze niedriger als bei 1.4521, Zugfestigkeit etwas höher; Bruchdehnung 30-40%. Der ansonsten große Vorteil der Austenite, nämlich das hohe Verformungsvermögen ist bei der Anwendung als Tiegelwerkstoff eher unerwünscht, denn dieses führt dazu, dass der Tiegel bei normalen Einsatztemperaturen im Laufe der Zeit zum "Durchhängen" neigt.	schlecht; das Kesselblech hat bei Temperaturen bis 950°C keine nennenswerte Festigkeit mehr, da die Temperatur von 500°C für die Zeitstandsfestigkeit im Dauerbetrieb bei weitem überschritten wird. Ohne die stützende Wirkung der Außenhaut wäre Kesselblech für Tiegel in Magnesiumsöfen (ganz absehen von der sehr schlechten Korrosions- und Zunderbeständigkeit) überhaupt nicht verwendbar.	
Warmfestigkeit	gut wegen Molybdängehalt	mittel	Außenmantel wie 1.4828, Kesselblech bei Magnesiumschmelzetemperaturen sehr schlecht	
Sigmaphasenversprödung	herabgesetzt, da Molybdän das Gefüge stabilisiert	besonders ausgeprägt bei austenitischen Stählen, wenn sie längere Zeit Temperaturen zwischen 590 und 870°C ausgesetzt sind. Das ist genau der Bereich in welchem Magnesiumtiegel betrieben werden! → Gefahr des Sprödbruchs	Außenmantel wie 1.4828; für Kesselblech nicht zutreffend	

Europäische Norm (EN)	1.4521	1.4828	Kesselblech HI plattiert mit 1.4828
("Kornzorfall")	beständig wegen Molybdängehalt und v.a. wegen Titan und/oder Niob, welches den Kohlenstoff und den Stickstoff abbindet und somit nicht mehr als Karbid entlang der Korngrenzen ausgeschieden werden kann	anfällig wegen relativ hohem Kohlenstoff und des Fehlens von Titan und/oder Niob zur Stabilisierung (Abbinden des Kohlenstoffs)	Außenmantel wie 1.4828; für inners Kesselbech nicht zutreffend
Spannunsrißkorrosion	unempfindlich wegen Molybdängehalt , welcher eine geschlossene Oxidschicht garantiert. Durch die niedrige thermische Ausdehnungskoeffizienten des ferritischen Grundmaterials kommt es nicht zum Aufreißen bzw. Abplatzen der äußeren Oxidschicht	empfindlich wie alle Austenite, insbesondere bei zyklischen Temperaturwechseln kommt es aufgrund des großen Unterschiedes in der Wärmeausdehnung zwischen dem austenitischen Grundwerkstoff und der oberflächlichen Oxidschicht dazu, dass diese bei der Erwärmung aufgerissen wird. Dadurch ist der Grundwerkstoff eine Zeitlang schutzlos einem Korrosionsangriff ausgeliefert. Der Zwischenraum zwischen den Rissen verheilt im Laufe der Lauf der Zeit zwar wieder, nimmt die Tiegeltemperatur wieder ab, dann zieht sich der Grundwerkstoff stärker zusammen und die Oxidschicht platzt stellenweise wieder ab, wodurch es wieder zum Korrosionsangriff kommt.	Außenmantel wie 1.4828; für inneres Kesselblech nicht zutreffend
Wärmeausdehungs- koeffizient [K exp-1]	10 x 10exp-6 bei RT (wesentlich niedriger als 1.4828 → vorteilhaft)	17 x 10exp-6 bei RT	Außenmantel wie 1.4828; Kesselblech 12 x 10exp-6 bei RT
Wärmeleitfähigkeit [W/(m x K)]	gut; 35 bei 600°C	schlecht; 20 bei 500°C	schlecht wegen der erforderlichen großen Mindestwandstärken und wegen der Trennschicht zwischen Grundwerkstoff und Plattierung
Löslichkeit von Eisen durch Schmelze	gebunden ist; Schutz durch Chromoxidschicht	schwer, da Fe in einer komplexen Legierung gebunden ist; Schutz durch Chromoxidschicht	leicht, da Fe im inneren Tiegelwerkstoff "frei verfügbar" ist
magnetische Eigenschaften	magnetisch, ab Curietemperatur 650°C nicht magnetisch	nicht magnetisch	magnetisch, ab 770°C Curietemperatur nicht magnetisch
Eignung für Induktionsöfen		Spulenmitte sitzt.	bedingt geeignet wegen der relativ hohen Curietemperatur des Grundmaterials, welche höher ist als übliche Warmhaltetemperaturen; Tiegel darf nicht unter die Curietemperatur fallen, da dieser sonst das EM-Feld abschirmt und der Tiegelinhalt nicht ankoppeln kann
Preisniveau	sehr hoch, wegen Sonderproduktion	relativ niedrig, trotz hohem Nickelgehalt, da hohe Verfügbarkeit	sehr hoch wegen Plattierwalzverfahren, es gibt in Europa nur einen einzigen Hersteller (VOEST)
	Meißeln auf die Tiegelwand schlagen, weder	Thermoschock vermeiden! Am besten sollte der Tiegel im ausgeschalteten Ofen abkühlen. Der Tiegel sollte keiner Stossbeanspruchung ausgesetzt werden, wie z.B. mit schweren Hämmern oder Meißeln auf die Tiegelwand schlagen, weder händisch noch maschinell (Pressluft).	Wegen der stark unterschiedlichen Wärmeausdehnungen besteht im Laufe der Zeit die Gefahr, dass sich der Mantel vom Grundwerkstoff ablöst. Dann tritt erhebliche Zunderbildung auf, welche rasch zum Tiegelbruch führt.

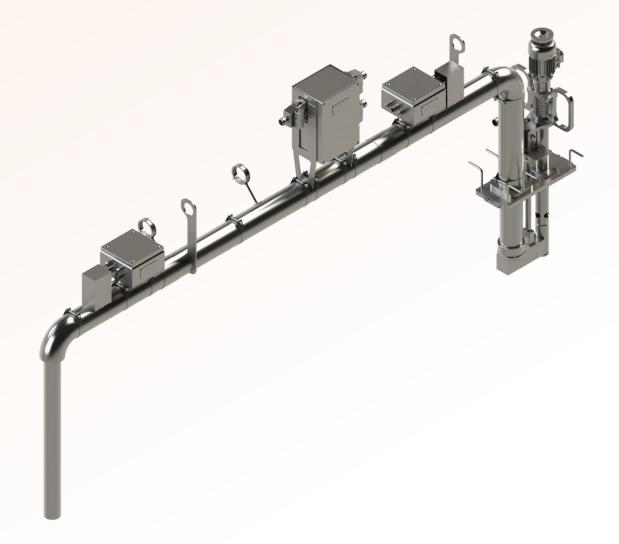


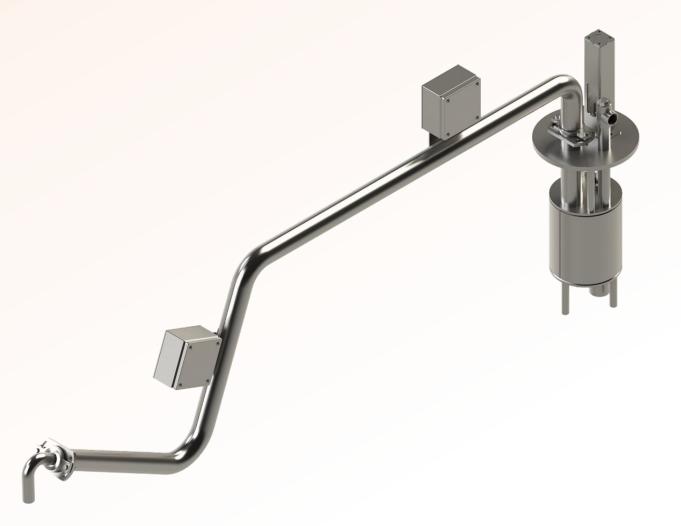
Europäische Norm (EN)	1.4521	1.4828	Kesselblech HI plattiert mit 1.4828
Anmerkungen	Anm.: es gibt ein Patent (US4353535) aus dem Jahr 1982 und 1984 (US4424436), in welchen die Verwendung von ASTM 444 (entspr. 1.4521) als Werkstoff für Magnesiumtiegel beschrieben wird	Anm.: es gibt Berichte, dass nach mind. 2-3 "Spülchargen" (durch das Herauslösen von Ni in die Schmelze) die Oberflächenschicht des Tiegels soweit an Ni veramt ist, dass eine Ni-Aufnahme der Schmelze im laufenden Betrieb kaum feststellbar ist und somit zum Gießen verwendet werden könnte. Die Probleme sind jedoch folgende: zum einen, was macht eine Gießerei mit den hoch nickelhältigen Spülchargen? (von Arbeitsaufwand des mehrmaligen vollständigen Ausschöpfen mal ganz abgesehen) und zum anderen ist es so, dass wenn der Tiegel ein paar Tage steht, dann gleicht sich der Ni-Gehalt im Tiegelwerkstoff durch Festkörperdiffusion aus und die Randschicht hat wieder einen hohen Ni-Gehalt, d.h der "Zirkus" mit den Spülchargen geht von vorne los.	Anm.: es gibt einen Bericht, wonach der Korrosionsangriff mit fluorhältigen Schutzgasen so groß war, das das Tiegelmaterial oberhalb der Schmelze völlig weggefressen wurde und die Tiegelwanne vom Flanschkranz abgerissen und in den Ofen gefallen ist. Weiters ist bekannt, dass bei Verwendung von SO2 sich am Tiegelmaterial Eisensulfat bildet, wodurch es (meist während des Tiegelreinigens) schon oft zu Explosionen und Metallauswürfen gekommen ist. Durch den hohen Al-Gehalt im Bodensumpf geht Fe in Verbindung mit den vorherrschenden Temperaturen noch leichter in Lösung und dadurch kommt es zu einer raschen Wandstärkenabnahme des Kesselbleches.
Beurteilung	hervorragende Korrosionsbeständigkeit auch gegen fluor- und schwefelhältige Gase bei gleichzeitiger Zunderbeständigkeit und Warmfestigkeit. Beständig gegen Spannungsriss- und interkristalline Korrosion. Als nickelfreier Werkstoff für Magnesium- Schmelz- und Dosierofentiegel für den Einsatz in elektrisch oder mit Brenngas beheizten Öfen als auch für Induktionsöfen sehr gut geeignet. (s.a. oberhalb in Zeile "Anmerkungen")	als Werkstoff für Magnesium- Schmelz- und Dosierofentiegel für den Einsatz in elektrisch oder mir Brenngas beheizten Öfen aufgrund der Probleme mit Nickelaufnahme der Schmelze schlecht geeignet. Der hohe Wärmeausdehnungskoeffizient kann dazu führen, dass beim Abkühlen nach dem Ziehen der Tiegel auf das erstarrte Magnesium aufschrumpft und dadurch Risse erhält.	als Werkstoff für Magnesium- Schmelz- und Dosierofentiegel für den Einsatz in elektrisch oder mit Brenngas beheizten Öfen aufgrund der Probleme mit der Korrosion und der Wandstärkenabnahme schlecht geeignet. Jedoch für Zinkschmelzwannen sehr gut geeignet, da keine schwefel- oder fluorhältigen Schutzgase verwendet werden und wegen dem niedrigen Temperaturniveau die Auswirkungen der unterschiedliche Wärmeausdehnung der beiden Werkstoffe nicht ausgeprägt ist.

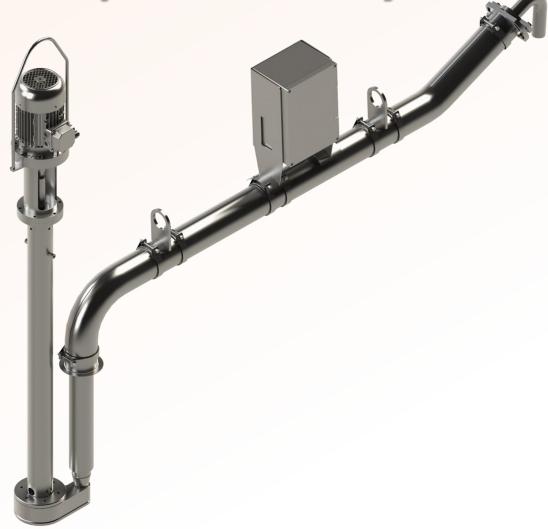


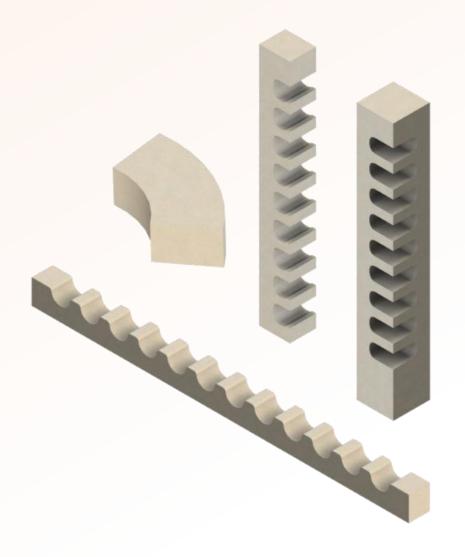


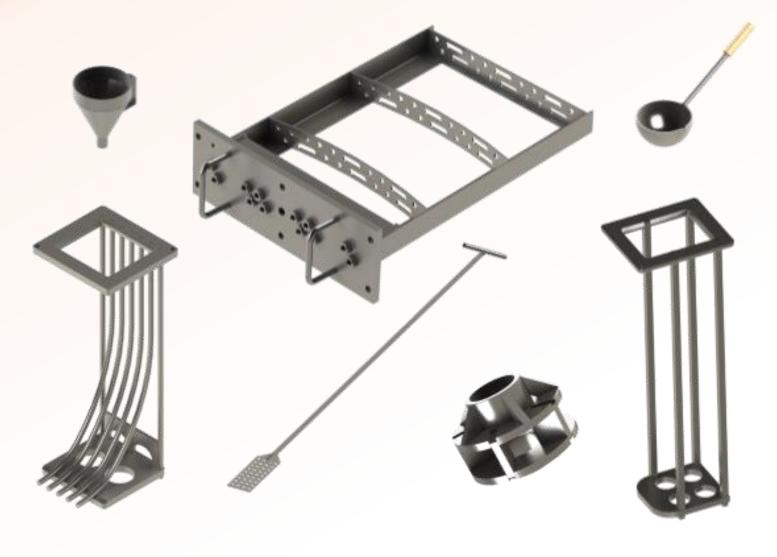
Tiegelplatten Neugestaltung bei bestehenden Anlagen











D-Löschpulver MagMetall

