() es:saar

Testing Embedded Systems

Quality Assurance in Embedded Software
Development

ldentify and reduce effort through better forecasts,
risk minimization and demand-based capacity
planning

Introduction

The process

Predictability

Risk minimization

Needs assessment +49 (0).176 814 56107

Risk management kontakt@essaar.de

Business Case +49 (0) 176 814 561 07

| Frer T e e essaar.de/kontakt

27

mailto:kontakt@essaar.de
tel:+49%20(0)%20176%20814%20561%2007
https://essaar.de/kontakt
https://essaar.de/
tel:+49%20(0)%20176%20814%20561%2007

es:saar

Introduction

What do | want?
What do | need?
manufacturing
Embedded System
pre-series
market-ready product

Hardware
Product

F &)

Preparation 3 conception Developme Prototyping programming backup Go-to-Market
L)
DO Y nt

Iteration

Quality assurance of development
Identify, investigate and optimize aspects of effort

Quality assurance is essential in electronics design. However, it is often associated
with high and unpredictable costs. The experiences and insights described in this
article are based on observations over several years and have helped us to identify,
analyse and ultimately reduce the effort required for functional and performance
testing*. As a result, we have been able to optimise our development costs and time,
improve time-to-market and ensure higher product quality.

To share these results, we first provide a basic and generalised description of the
quality assurance process in electronics development. The aspects of predictability,
risk minimisation and demand-driven capacity planning are then examined
individually. By suggesting a qualitative analysis of the needs and capacities of your
own quality assurance, you can estimate whether and to what extent the effort can
be optimised. The key question is how well the process requirements are covered by
the available capacities. Finally, a business case is used to show which specific
optimisations can be achieved. The es:scope® software is presented in the context of
the document. The appendix contains an overview of the literature on testing
embedded systems.

* Compliance tests are a separate topic 02

es:saar

From a bird's eye view

2. The test 3. Matching 4. Adjust

t

| m——

Quality assurance of development
Identify, investigate and reduce hidden costs

During development, requirements are defined, implemented and tested - the VDE V
model is the underlying standard. In an ideal world, the implementation would
directly satisfy all defined requirements, making testing unnecessary. But even with
precisely formulated requirements and carefully performed calculations and
simulations, quality assurance often reveals deviations from the desired behaviour.
This is because calculations and simulations always make idealised assumptions
about reality. Factors such as material differences, environmental influences or
unforeseen interactions in the system mean that real-world testing is required. Why
is that? Because the complexity of real systems exceeds the accuracy of models.
Measurements are therefore essential - to adapt models to reality, to check the
functionality of the developed systems and to correct deviations from the desired
behaviour.

During quality assurance, it may happen that, despite adjustments, the desired
results are not achieved. In such cases, a design iteration may be required to correct
the deficiencies. At the same time, the validation process may identify certain
functions as redundant. These functions can be simplified or even eliminated in a
simple iteration to make the system more cost effective.

03

es:saar

Terminology

Terms such as "testing" and "adaptation" are often too vague to accurately describe
the specific processes in the development workflow. To avoid misunderstandings,
the key concepts that play a central role in development are explained: verification,
validation, calibration and matching.

Verification:

Verification refers to the quantitative testing of whether specified requirements are
met. It is an objective measurement that must be maintained within a specified
accuracy - for example, a measurement deviation must not exceed 5%. The aim of
verification is to ensure that the developed system operates within the defined
tolerance limits.

Validation:

Validation goes beyond verification and looks at whether the right product has been
developed to provide the desired solution. It focuses on whether the features
developed meet the real need - for example, whether five USB ports on a laptop are
really necessary or whether the feature is over-dimensioned. Validation ensures that
the features created are useful and necessary in the real application.

Calibration:

Calibration is the adjustment of system parameters to correct for systematic
deviations. A typical example is the pre-processing of a sensor signal to compensate
for offset and improve measurement accuracy. These adjustments are usually made
using software by resetting calibration values or parameters.

Tuning:

Tuning goes beyond calibration and refers to the fine tuning of parameters to
optimise system performance. A typical example is the smooth starting behaviour of
an engine achieved by precise adjustment of the control parameters. Tuning requires
successful calibration and aims to optimise the performance of the system under the
given conditions.

04

es:saar

The quality assurance process 1/4

2. The test 3. Matching 4. Adjust

t

Q)

Access Conditions & Reference

1. Setup

measurement access, test conditions, reference measurement

To perform tests, both the physical system and a measurement system must be
available and correctly set up. This presents several challenges:

Access: The quantities to be measured must be made accessible to the measurement
system. Internal signals from a microcontroller, for example, need to be brought out,
which can be difficult with limited computing power and a limited number of outputs.

Test conditions: Special conditions such as extreme temperatures (e.g. testing in an
oven) can further complicate testing.

Reference measurement: A reliable reference measurement is required to compare
the test results to a value.

System resources: Limited storage space and communication channels can make

data collection difficult. If data is sent via communication protocols such as CAN or
UART, special solutions for data transmission often need to be developed.

05

es:saar

The quality assurance process 2/4

2. The test 3. Matching 4. Adjust

t

2. The test

start of operation, state change, monitoring

Once set up, testing begins, which can take anywhere from a few minutes to several
days, depending on the complexity and requirements. There are several challenges
to overcome during this step:

e Start up: The system is started under the defined test conditions and the
accessible signals are monitored or recorded with the test system.

e Data acquisition: The relevant measurements are recorded.

e Synchronisation: Unsynchronised data will lead to misinterpretation.

e State change interrupts: Tests can be interrupted by disturbances or deliberate
changes in operating conditions, requiring flexible monitoring.

e Data rate: High data rates can make transmission and storage difficult, especially
when system resources are limited.

e Data quality: The usability of measurement results depends on the accuracy of
the measurement system and the synchronicity of the data.

e Test monitoring: Misconfigurations are often discovered after the fact, as real-
time monitoring is not always possible.

06

es:saar

The quality assurance process 3/4

2. The test 3. Matching 4. Adjust

3. Match:

Export, Analyze, Evaluate

After the test, the data collected is analysed. This step includes

e Data export and analysis: The test data is exported and processed in analysis
software (e.g. MATLAB).

e Verification: The system behaviour is compared with the expected values and the
reference measurements to ensure that the requirements are met.

e Validation: The measurement data is used to evaluate whether the developed
system meets the requirements and fulfils the desired functions.

e Failure analysis: If deviations occur, it is investigated whether they are caused by
measurement errors, model inaccuracies or system-related problems.

e Comparison and evaluation: Deviations are identified by comparing them with
existing models and reference data, which provides insight into necessary
adjustments to system parameters.

07

es:saar

The Quality Assurance Process 4/4

2. The test 3. Matching 4. Adjust

t

| m——

I

4. Adjust:
Adjust, Calibrate, Tune

Based on the results of the analysis, the system parameters are calibrated and tuned
to correct deviations and optimise the system. This step includes

Software adjustments and hardware changes: Depending on the nature of the
deviations, both software adjustments (e.g. resetting parameters) and hardware
modifications (e.g. replacing components) may be required.

Calibration: System parameters are readjusted to correct systematic deviations and
ensure accurate operation.

Tuning: After calibration, parameters are fine-tuned to maximise system
performance under real operating conditions.

Iterative cycle: The whole process is repeated until the system meets all the

validation requirements. The number of iterations and interruptions can vary greatly
depending on the complexity of the system.

08

es:saar

Predictability of the effort

Our experience in embedded systems development has shown that considering all
the factors that influence quality assurance is critical to optimising project planning.
If all cost and time aspects are not taken into account during project planning, the
actual effort is almost always underestimated.

Transparency in the project plan: It is important that quality assurance is listed as a
separate and detailed item in the project plan. Often the testing process is seen as
part of the general development tasks, which leads to the actual effort being
underestimated. A simple solution to this is to create separate schedules and
budgets for specific quality assurance activities (e.g. calibration, prototype testing,
software verification). This will ensure that each test process is realistically accounted
for and reduce the risk of budget overruns.

Consider the iterative nature of the process: An important lesson to be learned when
planning for quality assurance is that its iterative nature makes it difficult to predict,
even as a stand-alone item in the project plan. Buffer times and flexible test cycles
have proved useful in responding to unforeseen problems. Process interruptions and
changing responsibilities can delay the planned project duration. The actual number
of iterations of adaptation loops is also difficult to predict. The following business
case shows how we have reduced the number of interruptions and iterations with
es:scope®.

Data quality tailored to your needs: The reliability of decisions depends heavily on
the quality of the data available. If measurements are inaccurate, asynchronous,
incomplete or fail to capture all relevant information, important deviations may be
missed or misinterpreted. Such problems can in turn lead to quality defects in the
final product. Investing in high quality measurement and test systems tailored to
your needs will pay dividends in the long run.

Weigh the risks of penalties for poor quality: Deficiencies in quality assurance that
lead to defects in serial production pose significant financial and reputational risks.
Unlike software, which can be updated, improvements to physical products are much
more complex. In the long term, the benefits of thorough quality assurance outweigh
the short-term savings. It is important to set clear priorities and strike an informed
balance between speed and quality to avoid problems down the road.

09

es:saar

Risk minimization through TDD

In application software development, test-driven development (TDD) is a proven
method of creating tests before the actual code is written. Test coverage can then
ensure that no problems occur after the code has been released. In the development
of embedded systems, TDD is possible in principle, but is much more complex. The
reasons for this are

Hardware dependency: Embedded system development is closely linked to the
underlying hardware. While emulators such as QEMU make it possible to simulate
hardware environments, certain hardware specifics such as electrical signals or
physical interactions are difficult or impossible to emulate. Critical aspects such as
signal transmission accuracy and timing play an important role in real-time systems
and require testing on real hardware. This reliance on physical hardware limits the
applicability of TDD, especially when it comes to testing the interaction of software
and hardware in different environments.

Customised development processes and environments: Embedded systems are
often very specific and diverse, making it difficult to standardise TDD. Unlike
application software, where there are established toolchains, tools for embedded
systems are often less mature or difficult to access. Different hardware platforms,
customer-specific requirements and different toolchains make it difficult to
implement a standardised TDD process. The diversity of development environments
leads to increased adaptation efforts to integrate TDD into the process.

Resource constraints: Embedded systems are often constrained by limited memory,
processing power and I/0 capabilities. This presents a challenge as many TDD tests
rely on extensive resources to validate code coverage and functionality.

Real-time requirements: Many embedded systems operate in real-time, which means
they must meet strict timing requirements. Testing real-time requirements is
particularly challenging because test environments often cannot replicate this
behaviour with the required accuracy. Even minimal delays in simulated
environments can produce results that differ significantly from reality, compromising
the validity of the tests.

es:saar

Black, Grey and White box testing

Black-box, grey-box and white-box testing methods differ greatly in how deeply testers can
penetrate into the internal details of the software. Embedded systems present additional
challenges due to the close integration of hardware and software - there is software that
depends on the hardware.

Black box testing focuses on the external interfaces and visible functionality of the system.
The tester has no insight into the internal processes or source code. This is particularly useful
for dynamic testing, which tests the system's response to various inputs at runtime (including
fuzzing). For example, you can test the behaviour of a sensor by exposing it to different
environmental conditions and measuring the system's response. The advantage is that the
tester is testing the system like an end user, but insight into internal bugs or time-critical
issues is limited.

White box testing, on the other hand, provides a detailed view of the source code and
hardware implementation, and enables both static and dynamic testing. Static tests examine
the code without executing it to identify errors in the logic or possible vulnerabilities. Static
analysis tools scan the source code for security holes or unfulfilled conditions. Dynamic tests
in white box testing focus on run-time aspects, such as checking interrupt handlers or
register accesses in the microcontroller. Emulation also plays an important role here,
allowing tests to be run before the real hardware is available. QEMU (Quick Emulator) is
often used to simulate the hardware environment to test the behaviour of the software,
especially in the early stages of development. However, emulation has its limitations when it
comes to hardware-critical aspects such as signal accuracy or real-time behaviour, so final
testing on real hardware is required.

Grey box testing combines the approaches of black box and white box testing and is
particularly useful in scenarios where the tester has partial knowledge of the source code
and hardware. Tests can be performed to specifically test critical modules or interfaces. In
embedded systems, grey box testing is often used to test specific components or
communication protocols such as UART or SPI, where both external functionality and internal
logic are relevant. Dynamic testing can be used to ensure that the system functions correctly
under different operating conditions.

The combination of dynamic and static testing within the three test methods is essential in
embedded systems, as the tight coupling of software and hardware requires special test
approaches. While black-box tests ensure that the system functionally meets the
requirements, white-box and grey-box tests help to detect deeper-level bugs that may arise
due to the close hardware dependency and real-time requirements.

es:saar

Demand & capacity

“To crack a nut with a sledgehammer”

@

Determine the need for quality assurance
Examine aspects of the need

The need for quality assurance depends heavily on product requirements and
business strategy. Long-term optimisation of quality assurance is worthwhile if it
contributes to sustainable improvements in product quality and operational
efficiency. The decision as to which quality assurance measures are appropriate
depends directly on the type of product, the application environment and the long-
term goals of the company. The determination of requirements is based on a cost-
benefit analysis that carefully weighs the cost and benefits of testing activities to
create a quality assurance capability that meets the requirements.

A company that rarely develops new products could invest in basic but cost-effective
quality assurance, while high-throughput companies with customised solutions
require more extensive, automated testing and more dynamic quality assurance
measures to cope with the large number of variants and requirements. For less
complex systems, such as a temperature sensor, a minimalist test strategy aimed at
simple functional testing is sufficient, while complex systems, such as the power
management in an electric excavator, require robust quality assurance that covers
different scenarios, load changes and extreme conditions.

es:saar

Need for quality assurance

1. Project-related requirements
Technical requirements of the product

¢ Number of requirements: The more requirements that need to be covered, the greater the effort
required to record and evaluate these variables. The correlation between the parameters and
their different levels of complexity has a significant impact on the test effort.

e Number of devices and test cycles: The number of devices to be tested affects the effort required
to perform the tests - especially when test configurations have to be set up on a test bench.
Multiple quality assurance iterations, which are often required, significantly increase the effort,
especially if each test device has to be reconfigured.

¢ Interface diversity: The large number of communication interfaces (e.g. CAN, SPI, UART) can lead to
increased test effort, as each interface must be specifically tested.

e Software complexity: The more complex the firmware, the greater the impact on effort, as
complex programs often have more edge cases to test.

e Data rate: Data rate requirements can have a major impact on the scope of quality assurance. For
example, if very short system response times or current peaks at 10 kHz need to be measured,
this will require special measurement systems and test procedures.

¢ Real-time requirements: If the product must meet certain real-time requirements, the test systems
must also be designed to accurately test these requirements.

e Resource limitations: High data rates or large amounts of test data may be hampered by limited
communication channels, storage space or computing power. Specific measures must be taken to
overcome these limitations.

e Operating modes and environments: The number of operating modes and special operating
conditions (e.g. extreme temperatures) have a significant impact on the quality assurance effort.
Tests under real operating conditions are often more complex and require special equipment.

es:saar

Need for quality assurance

2. Portfolio-related requirements
product management and business requirements

A company's product portfolio also has a major impact on the need for quality
assurance:

e Highly specialised products: If the portfolio contains only a single product with
very high technical requirements, it may be acceptable for quality assurance to
be inefficient because the frequency of testing is low.

e Product vs. project business: Companies in the product business tend to perform
quality assurance runs less frequently than companies in the project business,
which are constantly developing new, customised solutions.

es:saar

Need for quality assurance

3. Strategic and operational requirements
corporate structure and processes

The organisational structure also influences how effective quality assurance can be. A
cross-departmental process landscape can be particularly challenging.

When the development of a product is spread across multiple departments, such as
hardware, software and validation, iteration loops can be particularly problematic.
For example, a developer in the validation department may discover an anomaly and
send the product back to the programmer. This often leads to additional delays,
especially if these departments have different priorities or parallel projects. In such a
scenario, quality assurance is a process that needs to be both well structured and
agile to be efficient.

es:saar

Capacity assessment

Quality assurance from handicrafts to space travel

The efficiency of the tuning process depends on the processes, the tools available and the
number of staff. Every company has different capacities. Here we have five arbitrarily defined
levels to classify the capacity of quality assurance.

2. The test 3. Matching 4, Adjust

Level 1 (Basic): Black Box, Offline Adaptation, Asynchronous Capture

Description: Laboratory equipment, such as an oscilloscope, is used to acquire data from the pins of
the microcontroller or at test points.

Features: Data is exported and analysed after a test. Adjustments are programmed manually. The
data from the laboratory instrument is not synchronised with the inputs or other system parameters.
This approach is very time consuming and iterative, as adjustments are only made after the system is
switched off and the data is evaluated manually. Each adjustment requires a new test run, resulting in
long development cycles. The black box approach with asynchronous data allows corrections to be
made for major deviations from the measurement data calibration, but is of little help in tuning
controllers.

Application scenarios: Suitable for simple systems with very low requirements where only occasional
adjustments are required.

Example: A temperature sensor that serially outputs a rounded temperature value every 10 minutes.

es:saar

Level 2 (time synchronisation): Black Box, Offline Adjustment, Synchronised Acquisition

e Description: Data acquisition is performed using a synchronised data logger to which internal data
is output via a communication interface.

e Features: After the test run, the data is exported and analysed to determine the necessary
adjustments. The sampling rate is high enough to monitor overall system performance, but details
may be lost during rapid system changes. Collecting data with a data logger improves efficiency
compared to Level 1, but the offline nature of tuning remains, resulting in many iterations. Simple
tuning tasks are possible.

e Application scenarios: Simple sensor applications

e Example: Test and evaluate the creep behaviour of a capacitive pressure sensor under different
operating conditions for inclusion in a look-up table.

Level 3 (real time): Grey Box, Offline Adjustment, Synchronised Real-Time Recording

e Description: Acquisition and recording of selected variables is performed while they are displayed
and monitored in real time and during ongoing system operation.

e Features: Conclusions about system behaviour can be drawn directly during the test and
parameter adjustments can then be programmed into the software without separate analysis.
Multiple data sets can be directly compared. There are fewer uncertainties and interruptions than
with recording without real-time display.

e Application scenarios: Tuning of controllers, validation with a large number of signals, high test
coverage through unit tests, systems with high requirements and high quality standards.

e Example: FOC motor control of a BLDC controller

es:saar

Level 4 (online actions): Grey box, online customisation, synchronised real-time capture

e Description: Same conditions as level 3, but with the ability to set parameters, send commands
and set event triggers at run time. These triggers activate data collection when specific events or
anomalies occur, allowing critical system conditions to be captured.

e Features: Runtime adjustments reduce the number of iterations and interruptions. The high
sampling rate enables very accurate monitoring of the system. Event triggers can be used to
capture rare or critical events in the system, making the tuning process more efficient and
targeted.

e Use cases: Particularly useful for systems that require high test coverage, that need to operate
under different environmental conditions, or whose performance needs to be highly optimised.

e Example: Sensorless FOC motor control of a BLDC controller

Level 5 (In the Loop): White box testing with hardware-in-the-loop (HIL)

e Description: At this level, the tuning process is fully automated. A HIL (hardware-in-the-loop)
system allows parameters to be automatically adjusted in real time and immediate optimisations
to be made.

e Features: Automatic tuning and continuous real-time monitoring allow complex scenarios to be
tested, with the system responding to simulated environments in real time. The set-up effort is
high, both in terms of cost and technical implementation.

e Application scenarios: Ideal for safety-critical applications (e.g. aerospace, medical) where failure
could have serious consequences.

e Example: An autonomous vehicle control system can be tested to simulate how the vehicle reacts
in different situations (rain, snow).

es:saar

Capacity assessment

(1)
7

2. Time Sync 3. Real-Time 4. Online Actions 5. In the Loop

Five levels of capacity
Quality assurance from handicrafts to space travel

Level 1 or 2: Sufficient for simple, non-critical systems, but with the uncertainty that
the backup effort is difficult to estimate and can be large in the worst case. The
tuning process is relatively inefficient here, so the effort can grow quickly if many
iterations are required.

Level 3 or 4: Essential for complex, demanding systems in time-critical projects. The
use of real-time data and synchronised adjustments ensures more efficient process
control and better predictability of the assurance effort. This can significantly
improve development time and quality assurance.

Level 5: Due to the high cost and effort involved, this is only appropriate for security-
critical and highly complex applications. Such systems often need to operate under a
wide range of operating conditions and environmental factors, requiring extensive
automatic real-time monitoring and adaptation.

es:saar

The Business Case: es:scope®

The initial situation
Developing new engine control in medium-sized companies

A medium-sized company is developing a new FOC motor controller for a BLDC motor with strict real-
time requirements and limited system resources. The current development process is considered
efficient enough, but still time consuming due to multiple iterations and manual adjustments. The
data used for validation is considered to be sufficient, although test coverage is not high.

e Technical requirements:
o FOC motor controller for BLDC motor
o 20 parameters in the requirement list
o High data rate (20 kHz for control, 1 Mbps in the CAN bus)
o Minimal system resources
o Environmental conditions -20°C to 60°C
e product portfolio:
o Drive systems such as inverters, motors, motor controls and Hall sensors, with a typical service
life of 8-12 years
e Corporate structure:
o Medium-sized company with 160 employees
o Separation between software and hardware development; validation by electrical engineers
e Current quality assurance capacity:
o Using a data logger to collect data
o After each iteration, new parameters must be programmed and tested manually
o Simulations support parameter selection, but the system must be shut down regularly

20

es:saar

The Business Case: es:scope®

@ ’ . . 00:00:00 ﬁ Home |"j_"| Stream ﬁ Commands — X

3 Signals received
£} signal Settings Bl Associate EB Deassociate 4 Add Plot — Remove Plo

Plot
Rec Signal Value Data Type Scaling Factor _—T 1 T | St

 Time 187.535 32-bit Ulnt 0.001

I Sine 0312869 Float 1 | <“’ H>
M Cos 0.999507 Float 1 — =
e
i e e
= =
L
Data-Size Data-Speed External Record Update interval: Samiples buffered: Samiples plomwed:
35 ave 0 obns nOFF 50ms 3000 1000 I'l'l Quicksave E] Save As < Clear

The approach

Introduce and test es:scope® in the existing development process

The aim is to integrate es:scope® into the existing development process in order to increase
efficiency and to evaluate the benefits for subsequent projects. A software engineer and a
hardware engineer are licensed to determine the best way to implement and use the
software.

Process:

¢ After a short introduction, es:prot is integrated into the existing microcontroller code.

* Relevant variables for the measured quantities and parameters for calibration, as well as
the communication parameters are selected.

* Real-time data can now be tracked on the laptop and parameters adjusted via any serial
interface, even while the device is in the temperature test chamber.

* Once a valid configuration is found, the code is finally adjusted to complete the
development.

Benefits:

For the electrical engineer: Real-time analysis of the measurement signals and controller
performance, as well as calibration and tuning during the test.

For the programmer: Unit testing of hardware-dependent software that was previously not
possible.

21

es:saar

1. Time expenditure & labor costs

By using es:scope®, iterations can be reduced and lead times can be significantly shortened.
Previous manual adjustments and system shutdowns are no longer necessary as es:scope®
enables real-time analysis and calibration.

¢ Real-time analysis and calibration: Adjustments are made while the system is running,
eliminating the need for system shutdowns.

* Efficient parameter selection: Measurement parameters can be set by simple code
changes, minimising set-up and adjustment times.

* Universal interfaces: es:scope® can communicate with various protocols, eliminating the
need for complex adaptations and speeding up setup.

* Plug and Play: Pre-configurations for the display of signals make commissioning easier.

* No reboots required: Operating modes can be changed directly by commands from
es:scope®.

e Number of tested devices and test runs: The test configuration described in the software
allows a large number of devices to be analysed via plug-and-play.

Example:
Aspect Previously Afterward
Setting up the measuring system 4 hours 1 hour
Wage costs of the setup 320€ 80€
Iterationen 8 iterations 2 iterations
Time required per iteration 8 hours 2 hours
Total labor costs per iteration 640 € (8h * 80 €/h) 160 € (2h * 80 €/h)
Total costs 5440€ 400€

Better planning: By reducing iterations and speeding up setup, there are no interruptions
caused by other tasks, enabling accurate project planning.

Process acceleration: 2 weeks

Savings in labour costs: 5080€

22

es:saar

2. Equipment costs

The result: Procurement costs can be reduced with es:scope

By using es:scope®, the procurement and maintenance requirements for specialised
measurement technology can be significantly reduced. In many cases, expensive systems
such as hardware-in-the-loop (HIL) systems, specialised data loggers or other test equipment
become superfluous. Existing hardware and software is used to achieve the required test
accuracy and data quality.

Reducing the need for measurement equipment es:scope® enables optimal use of existing
infrastructure, minimising the need for expensive new investments in measurement
technology:

* Less hardware: Instead of data loggers, digital oscilloscopes or HIL systems, real-time
data acquisition is enabled directly on a computer, reducing the dependency on required
physical measurement devices.

* Less software: With the es:prot protocol working with es:scope®, there is no need to
develop additional microcontroller code for signal conditioning, measurement protocols
or special software for data formatting. This not only saves development time, but also
avoids potential sources of error when creating your own software solutions.

* Fewer peripherals: es:scope® allows the existing system to be used for data acquisition
without the need for additional external measurement technology or communication
peripherals. Since es:prot can be integrated directly into the embedded software, it offers
great flexibility in system architecture and eliminates the need for additional physical
interfaces or devices.

* Less maintenance: Unlike physical devices, es:scope® eliminates hardware maintenance
costs.

Some examples:

To illustrate the savings potential through the use of es:scope®, here is an example
calculation:

Cost of a data logger: €1,000 to €5,000.
Development costs for own microcontroller software for signal provision: 40 hours * 80 €/h =
3.200 €.

Total savings:

The use of es:scope® reduces the acquisition costs for measuring equipment, as es:scope®
offers a cost-effective alternative to conventional measuring technology. A key feature is its
interface independence, which reduces the complexity of adapting the system and test
benches for specific tests. Material costs that would normally be incurred for such
adaptations are eliminated or minimised. Development costs for your own test software can
also be reduced as es:scope® provides a comprehensive, ready-to-use test and analysis
environment.

23

es:saar

3. Quality risk

Result: The higher test reliability and test coverage with es:scope® can increase the certainty
that design errors are detected before production. The programmable triggers and high
sampling rate of es:scope® make it possible to identify and document errors, anomalies and
failure scenarios.

e Detection of anomalies, defects and failures: With the high sampling rate of es:scope®,
even the smallest deviations from the desired system behaviour can be detected. Critical
conditions and peaks that might go undetected at lower sampling rates are detected
early. es:scope® also allows for long-term testing where critical system conditions are
recorded. Programmable triggers can be used to track anomalies and document the
exact conditions under which they occur. Commands can be used to test the response of
the system.

e Fine tuning and optimisation: Real-time feedback of measured variables and on-line
parameter adjustments allow different settings to be quickly tried on the real device. This
makes it possible to find a parameter configuration for optimised system performance.

e Test coverage: With es:scope®, hardware-dependent software can be analysed in
different test scenarios. Commands can be used to check the system behaviour for
specific inputs. Flexible parameter selection, command-based changes to system
behaviour and real-time analysis reduce the likelihood of discovering bugs or errors after
production.

Example:
To illustrate the savings potential, here are examples of typical cost points:

e Cost of rework: Typical rework costs can run into five figures, especially in volume
production. These costs include not only materials and labour, but often additional
testing and, if necessary, the return of defective units.

e Costs for faulty hardware: If a repair is not technically possible, the full material and
production costs are incurred without compensation. This is especially true for complex
embedded hardware, where failures are often irreversible.

e Potential downtime costs: Production downtime can easily cost tens of thousands of
dollars per day, depending on the volume and urgency of production.

e Production delays: Delays due to unexpected failures can delay time-to-market, resulting
in lost sales.

Sources that address the economic impact of test coverage:

¢ Jovanovi¢, Z., & Zivkovi¢, D. (2006). "Testing of Embedded Software". Journal of Automatic Control, 16(1), 9-14.

¢ National Institute of Standards and Technology (NIST) (2002). The Economic Impacts of Inadequate Infrastructure for Software Testing.
e Zhu, H., Hall, P.A.V., & May, J.H.R. (1997). "Software Unit Test Coverage and Adequacy". ACM Computing Surveys, 29(4), 366-427.

¢ Vahid Garousi et al. Testing embedded software: A survey of the literature, 2018

24

es:saar

Conclusion

2. The test 3. Matching 4. Adjust

2 t

Identify & reduce effort

Better forecasting, risk minimization and demand-based capacity planning

This document provides a comprehensive overview of the quality assurance process in
development. In order to reduce time and investment, predictability, risk minimisation and
demand-oriented capacity planning of quality assurance were examined in detail.

With es:scope®, validation and calibration processes can be optimised, costs reduced and
time-to-market shortened. The use of es:scope® usually pays for itself from the very first
project. In the long term, the savings increase with each subsequent project, so that the
benefits grow continuously. Both embedded software engineers and electrical engineers
benefit from the ability to optimise their workflows and improve test coverage.

The aspects of quality assurance effort discussed in this document can be specifically
addressed by using es:scope®. However, each individual case should be examined to
determine the specific requirements for quality assurance and the extent to which an
expansion of capacity makes sense. We would be happy to assist you in creating a tailor-
made business case to evaluate the optimal use of es:scope® for your company.

25

es:saar

Contact

@ https://wa.me/4917681456107

@ kontakt@essaar.de

(V) +49(0)176 814 56107

essaar.de/kontakt

@ ’ . . 00:00:00 ﬁ Home |"_l"| Stream [ﬁ Commands - X

3 Signals received
£ signal Settings Bl associate EM Deassociate =+ Add Plot — Remave Plot

Rec Signal Value Data Type Scaling Factor =TT T SheItm

A Time 187.535 32-bit Ulnt 0.001 Q
I Sine 0.312869 Float 1 | | < >
“1 Cos 0.099507 1

Float

O r—
=l —
L
Data-Size Data-Speed External Record Update inter wal: Samples buffered: Samples plotted: :
35 ame O ooas 1 OFF 50ms 3000 1000 ~L| Quicksave IEI Save As && Clear

Request es:scope® trial version how

essaar.de/esscope

26

mailto:kontakt@essaar.de
tel:+49%20(0)%20176%20814%20561%2007
https://essaar.de/kontakt
https://wa.me/4917681456107
https://essaar.de/esscope

es:saar

Appendix A: Testing Embedded Software

The publication "Testing Embedded Software: A Survey of the Literature" by Garousi et al. (2018
[https://doi.org/10.1016/j.infsof.2018.06.016] provides a comprehensive overview of the state of the
art in embedded software testing. Several important findings on the state of quality assurance and the
challenges in testing embedded systems can be derived from this study:

1.Specific challenges when testing embedded software:
o Hardware-software integration: Embedded systems are characterized by the close integration
of hardware and software, which makes testing more complex.
o Resource constraints: Limited memory, computing power and energy influence the choice of
testing methods.
o Real-time requirements: Time-critical functions require special testing approaches to identify
timing and synchronization problems.
o Safety-critical applications: In domains such as automotive, medicine or aviation, high reliability
requirements must be met.
2.Variety of test methods:
Model-based testing: Using models to generate test cases and simulate system behavior.
Hardware-in-the-Loop (HIL) Testing: Testing with real hardware in a controlled environment to
check the interaction between hardware and software.
o Software-in-the-Loop (SIL) and Processor-in-the-Loop (PIL) Testing: Simulation of hardware
components to perform software tests independently of the physical hardware.
Formal verification: Application of mathematical methods to prove properties of the software.
o Static and dynamic analysis: Analysis of the source code without (static) and with (dynamic)
execution to detect errors at an early stage.
3.Automation and tool support:
o Test automation: Necessary to increase efficiency and reduce human errors. Automated
testing enables more frequent and thorough testing.
o Specialized tools: Development and use of tools tailored to the specific requirements of
embedded systems.
4.Test coverage and quality metrics:
o Increased test coverage: Higher coverage leads to better fault detection, but is often difficult to
achieve due to the complexity of embedded systems.
o Metrics: Using metrics to evaluate test effectiveness and identify high-risk areas.
5.Challenges and open research questions:
o Scalability: Dealing with the increasing complexity and size of embedded software.
o Automated test case generation: Need for methods to automatically generate test cases,
especially for rare or critical scenarios.
o Integrating tests into the development process: promoting continuous integration and
continuous testing practices.
Conclusions on the state of the art:
e Need for integrated approaches: Effective quality assurance in embedded systems requires
integrated testing strategies that consider hardware and software together.
e Early testing: Shift-left principles, where testing begins early in the development cycle, are critical
to detecting and fixing defects early.
e Combination of methods: A combination of different testing methods (static, dynamic, formal)
offers the best results.
e Resource awareness: Tests must be designed taking into account the resource constraints of
embedded systems.

27

