

Application Note: Rifle Scope Test System

CI Systems has been a leading designer and builder of instruments and turnkey stations for testing and aligning electro-optical (EO) systems, facilitating measurements in both visible and thermal bands. This includes target projectors for laboratory, depot, and field applications.

The CI Systems Riflescope Tester is a compact, user-friendly system. It is designed for production testing, alignment and focusing of Vis riflescopes with collimator optics optimized for the Vis spectral wavelength band of 400-700nm.

The Perfect Tool for Testing and Calibrating Your Rifle Scope

					UIL Device Carder			
the Current R/N Help				gie Venri	Nie Edit. Toola			,
iler Tesler	W/T CI Integration - I	0000	UNIT SUPERLISER		□ + B			
ala da				_	SR 800N-192168.0.10			
	Execution Sequence: Execution Rules		Devices		alt Power Heter - 92960			
	<u>* </u>		58 800N -252 268 0 30	-	alt Energy Heter - 932078			
	 2: MTF Live VBH, V3 		Energy Meter - \$22375 Proces Meter - \$29605		IBi FG - Cenera Link			
	<u>.</u>				di TheimspingSource			
2) Resolution_V2 4ej TBD + MTF_CAUR_NEW Four S-	*	_	NS - Analog RS - Camera Link		IBi FG - Analog			
AN TRO - MITP, CALIE, NEW YOAR S		A Setup Piede CN	105 CCD -182 398 1.2		LOS CCD -282 268 3.2			
Sol 180 - Hill Reference (Camera			Their aging four (#					
Stat 180 - MTP With Riflescope V2		ts Heas.rements	rereprotet	•				
TBD MopBox PeorFail	OB Start Time Set Securice	Duration Tags (45M						
			-	_				
OK ERIMIT	Vision Settings					_		batt
er flog 3 energine er en er en en er en en er en en er en	ts are satisfactory to complete the test.		MTF			Emp(cyrinilad)		
		- 11		1.4		1	0.9% 1.080	
		ante -			NO ALA	1.5	1049 1299	
A REAL PROPERTY OF THE REAL PR			and they	NG	ALL A MA	2	1,296 0,988	
		1			Mar hour	23	0.678 1.077	
		13	Y I V			1 2	0.756 0.976	
			V			a 35	0.756 0.976	5 8
				4		2	0.756 0.976	
			Frequency (cyimi	4		2	0.756 0.976	
				4		2	0.756 0.976	
			0.0.0	a	(100)(100)(10	2	0.756 0.976	
			0.0.0	4	(100)(00)(22	2	0.756 0.976	
		ta angu	0.0.0	a 1		2	0.756 0.976	
		ta angu	0.0.0	4		2	0.756 0.976	
			0.0.0	a A		2 35 4	0.756 0.976 1.118 0.944 1.138 1.081	5 9
		ta angu	LSF	h		A 2 35 4 Horizontal	0.756 0.976 1.138 0.944 1.138 1.081	leg]
		ta angu	LSF	h		2 35 4	0.756 0.976 1.138 0.944 1.138 1.081	leg]
		Prev Wure (of	LSF	h		A 2 35 4 Horizontal	0.756 0.976 1.138 0.944 1.138 1.081	leg]
			LSF	h		A 2 35 4 Horizontal	0.756 0.976 1.138 0.944 1.138 1.081	leg]
			LSF LSF Relative Position (Pr	h		A 2 35 4 Horizontal	0.756 0.976 1.138 0.944 1.138 1.081	leg]
			LSF LSF Relative Position (Pr	h		Horizontal Vertical Tilt	0.756 0.976 1.138 0.944 1.138 1.081	leg]
			LSF LSF Relative Position (Pr	h		A 2 35 4 Horizontal	0.756 0.976 1.138 0.944 1.138 1.081	leg]
			LSF LSF Relative Position (Pr	h		Horizontal Vertical Till	0756 0976 1318 0944 1318 1081 Tift: 0.0 [deg	leg]
			LSF LSF Relative Position (Pr	h	(B) (B) (2)	Horizontal Vertical Till	0.756 0.976 1.118 0.944 1.128 0.944 1.128 0.01 Tilt: 0.0 [deg N/A	leg]
			LSF LSF 			Horizontal Vertical Till	0756 0976 1318 0944 1318 1081 Tift: 0.0 [deg	leg]
		boll and	ESF		(B) (B) (2)	Horizontal Vertical Till	0.756 0.976 1.118 0.944 1.128 0.944 1.128 0.01 Tilt: 0.0 [deg N/A	leg]

Friendly user software for automatic testing

FEATURES:

- Eyepiece camera used to simulate the human eye
- Quick-mount Clip-On fixture for the Rifle Scope
- High-quality optical system with wide FOV collimator and a visible radiation source.
- Motorized target wheel with various target plates and a mechanism for variable distance projection.
- User-Friendly CTE Software for automatic testing
- Simulation of target distances from 50m to infinity
- Adaptation to NVG (Night Vision Goggle) Optional
- Real-time contrast and MTF measurements
- Live contrast module displays reticle sharpness

www.ci-systems.com

POLYTEC GmbH T: +49 (7243) 604-4540 Polytec-Platz 1 - 7 Fax: +49 (7243) 699 44 D-76337 Waldbronn E-Mail: wl@polytec.de GERMANY www.polytec.de

Extended Area Blackbody ControlMaster

CI Systems' advanced architecture **ControlMaster SR-800N** sets a new standard for **accuracy and uniformity in blackbody technology.**

Temperature measurement and calibration are performed in the radiation head and then transferred digitally to the **ControlMaster controller**. The result is accurate, stable, reliable and **NIST-traceable** (*).

FEATURES

- Standard blackbody emitter sizes ranging from 2" to 40". Other sizes are available upon request
- Superior accuracy
- High-uniformity emitting surface
- Wide range of radiation temperatures
- Operates at a wide range of ambient temperatures
- Interchangeability between head and controller
- Resolution in millidegree-Kelvin
- Configurable resolution and stability
- Low acoustic noise
- Nitrogen inlet for inert atmosphere on LT models
- Dual-head option available (one controller with two blackbodies)

Controller features:

- Large color LCD display with touch screen user interface
- Ability to control up to four motorized devices
- Certified to MIL-T-28800D, CE, and FCC
- Compact, portable controller
- 19" rack-mount kit included
- Communication ports: Ethernet, RS-232 (optional GPIB)

Intuitive touch screens for controlling the system

SYSTEM CALIBRATION

Temperature is controlled by easily-removable sensors which the user can replace in just minutes. Our factory-supplied replacement sensors provide an efficient means for recalibrating the system, providing an additional 12 months of service.

Alternatively, customers may recalibrate the blackbody with our optional CK-800R calibration kit.

- Quick calibration by replacing the removable sensor
- NIST-traceable calibration
- Remote control software included

(*) "NIST": National Institute of Standards and Technology

SR-800N Extended Area Blackbody ControlMaster

» SPECIFICATIONS

Absolute Temp. Range, °C 0 to 125 10 to 80 1 Differential Temp. Range, °C ± 0.005 ± 0.015 ± 0.02	JF LEILICATIONS										
2D4D7D8D10D12D14D16D20DBlackbody Emitter Size, inches2 dia.4x47x78x810x1012x1214x1416x1620x2014DAbsolute Temp. Range, °C $2 \exists a.$ $4 \forall a.$ $7x7$ 8x810x10 $12x12$ $14x14$ 16x1620x2014DDifferential Temp. Range, °C $-5 \exists t. $			Model: SR-800N-								
Absolute Temp. Range, °C 0 to 125 10 to 80 10 Differential Temp. Range, °C ± 0.005 ± 0.015					-						40A 40D
-25 to 100 -25 to 100 -15 to 55 -15 to 50 -10 to 1000 -10 to 15 -15 to 55 -15 to 55 -15 to 55 -15 to 55 -15 to 50 -10 to 100 -10 to 15 -15 to 50 -16 to 16 -10 -15 to 50 -15 to 50 -10 <	Blackbody Emitter Size, inches	2 dia.	4x4	7x7	8x8	10x10	12x12	14x14	16x16	20x20	40x40
Uniformity, °C (2) ± 0.005 ± 0.015 ± 0.025	Absolute Temp. Range, °C			0 to 125				10 t	o 80		15 to 80
Set Point Resolution, °C Set Point Resol	Differential Temp. Range, °C			-25 to 100)			-15 1	to 55		-10 to 55
Absolute Temp. Accuracy, °C (3) $0.015 \odot I < 0.007 \odot I < 0.007 \odot I < 0.015 \odot I $	Uniformity, °C (2)	±0.005			±0.010				±0.015		±0.030
Uniformation of the term of the term of the term of the term of te	Set Point Resolution, °C					C	.001				
Stability, °C $\pm 0.003 @ \Delta T \le 10$, $\pm 0.008 @ \Delta T > 10$ Stability, °C Emissivity $0.95 \le 10$, ± 0.02 Settling Time (@ 0.01°C), Sec. $$	Absolute Temp. Accuracy, °C (3)			0.015	@T<0,	0.007 @	0 < T < 50), 0.015	@ T > 50		
The Control of Colspan="6" of Control of Control of Colspan="6" of Control of Contro of Contro of Contro of Control of Control of Control of Control o	Differential Temp. Accuracy, °C (3)				0.008 (@ ΔT ≤ 25	, 0.015	5 @ ΔT > 2	5		
<th< th=""><td>Stability, °C</td><td></td><td></td><td>±0.0</td><td>03 @ ∆T ≤</td><td>:10 , ±0</td><td>.008 @ ΔT</td><td>> 10</td><td></td><td></td><td>±0.010</td></th<>	Stability, °C			±0.0	03 @ ∆T ≤	:10 , ±0	.008 @ ΔT	> 10			±0.010
Operating Voltage, VAC 95 to 240 (50/60 Hz) Power Consumption, W 100 200 600 1000 1200 1800 3000 1200 1800 3000 1200 1800 3000 1200 1800 1800 3000 1200 1800 1800 3000 1200 1800 1800 3000 1200 1800 1800 3000 1200 1800 3000 1200 1800 3000 1200 1800 3000 1200 1800 3000 1200 1800 3000 1200 1800 3000 1200 1800 3000 1200 1800 3000 1200 1800 3000 1200 1800 3000 1200 <td< th=""><td>Emissivity</td><td></td><td></td><td></td><td></td><td>0.98</td><td>8 ± 0.02</td><td></td><td></td><td></td><td></td></td<>	Emissivity					0.98	8 ± 0.02				
Power Consumption, W 100 200 600 1000 1200 1800 1800 3000 1 Size, BB Head, HxWxD, cm (8) Ø6.5x10 20x16x16 27x23x23 35x31x16 35x31x16 40x36x16 59x46x17 59x46x17 71x62x20 12 Weight, BB Head, kg (8) 1 5 11 16 16 21 50 50 86 66 Size, Controller, HxWxD, cm (8) 1 5 11 16 16 21 50 50 86 66 66 66 66 66 66 66 66 66 66 66 67 67 67.0 68 66 66 66 67 67.0 68.6 66 67.0 68.6 67.0 68.6 67.0 68.6 67.0 67.0 68.6 67.0<	Settling Time (@ 0.01°C) , Sec.						15				
Size, BB Head, HxWxD, cm (8) Ø6.5x10 20x16x16 27x23x23 35x31x16 35x31x16 40x36x16 59x46x17 59x46x17 71x62x20 12 Weight, BB Head, kg (8) 1 5 11 16 16 21 50 50 86 1 Size, Controller, HxWxD, cm (8) 15 11 16 16 21 50 50 86 8 Weight, Controller, HxWxD, cm (8) 15x34x35 (3U) 15 15 20 1 Operating Temp. Head, °C 0 to 50 8 9 Operating Temp., Controller, °C 50 50 1 <td>Operating Voltage, VAC</td> <td></td> <td></td> <td></td> <td></td> <td>95 to 240</td> <td>) (50/60 H</td> <td>z)</td> <td></td> <td></td> <td></td>	Operating Voltage, VAC					95 to 240) (50/60 H	z)			
Weight, BB Head, kg (8) 1 5 11 16 16 21 50 50 86 Size, Controller, HxWxD, cm (8) 1 5 11 16 16 21 50 50 86 6 Weight, Controller, HxWxD, cm (8) 1 15x34x35 (3U) 18x45x60 (4U) 18x45x60 (4U) 15 20 15 Operating Temp. Head, °C 10 20 to 50 0 to 50 0 to 50 15 20 15	Power Consumption, W	100	200	600	1000	1000	1200	1800	1800	3000	7000
Size, Controller, HxWxD, cm (8) 15x34x35 (3U) 18x45x60 (4U) Weight, Controller, kg (8) 10 15 15 20 Operating Temp. Head, °C -20 to +70 0 to 50 50	Size, BB Head, HxWxD, cm (8)	Ø6.5x10	20x16x16	27x23x23	35x31x16	35x31x16	40x36x16	59x46x17	59x46x17	71x62x20	128x76x160
Weight, Controller, kg (8) 10 15 15 20 Operating Temp. Head, °C -20 to +70 Operating Temp., Controller, °C 0 to 50	Weight, BB Head, kg (8)	1	5	11	16	16	21	50	50	86	450
Operating Temp. Head, °C -20 to +70 Operating Temp., Controller, °C 0 to 50	Size, Controller, HxWxD, cm (8)			15x34x	(35 (3U)			18	3x45x60 (4	U)	
Operating Temp., Controller, °C 0 to 50	Weight, Controller, kg (8)			1	0			15	15	20	60
	Operating Temp. Head, °C					-20	to +70				
Storage Temp., °C -20 to +70	Operating Temp., Controller, °C					0	to 50				
	Storage Temp., °C					-20	to +70				

Notes (for pages 2-3):

- 1) All values are valid at an ambient temperature of 22°C, and in a non-condensing environment
- 2) Uniformity values are for a ±1°C step from ambient Temp @ 80% of the central area. For other Temp. multiply by ΔT
- 3) Accuracy is referenced to a NIST-calibrated CI Systems master sensor
- 4) LT models include refrigerator (power consumption depends on model)
- 5) Typical yearly drift: 0.02°C
- 6) Total system uncertainty: $0.02^{\circ}C \otimes \Delta T < \pm 25^{\circ}C$ and $0.03^{\circ}C \otimes \Delta T > \pm 25^{\circ}C$
- 7) Differential temperature range is limited to absolute temperature range, and absolute temperature range is limited to differential temperature range
- 8) All mechanical sizes are approximate. Please contact CI Systems for ICD drawing with the accurate sizes.
- 9) For mechanical characteristics of optional models please contact CI Systems

» OPTIONS for Room Temperature Environment										
					Mod	lel: SR-8	00N-			
Option:		2A 2D	4A 4D	7A 7D	8A 8D	10A 10D	12A 12D	14A 14D	16A 16D	20A 20D
ET	Absolute temp. range, °C Differential temp. range, °C		0 to 175 0 to 125 10 to 125 -25 to 150 -25 to 100 -15 to 100							
LT (4)	Absolute temp. range, °C Differential temp. range, °C			-40 to 150 -65 to 125			-40 to 150 -65 to 125			
WTR	Absolute temp. range, °C Differential temp. range, °C	-40 to 150 -20 to 150 -15 to 150 -60 to 125 -45 to 125 -40 to 125								
HE				0.99 :	± 0.01					

» OPTIO	» OPTIONS for Chamber Environment									
					Мос	lel: SR-8	00N-			
Option:		4A 4D	7A 7D	8A 8D	10A 10D	12A 12D	14A 14D	16A 16D	20A 20D	
CH-STD	Chamber temperature, °C Absolute temp. range, °C Differential temp. range, °C		-30 to 70 -40 to 80 -10 to 40							
CH-ET	Chamber temperature, °C Absolute temp. range, °C Differential temp. range, °C			-40 to 80 -40 to 150 -20 to 125			-40 to 80 -40 to 150 -20 to 100		-40 to 80 -40 to 150 -15 to 100	
CH-LT (4)	Chamber temperature, °C Absolute temp. range, °C Differential temp. range, °C			-40 to 80 -40 to 150 -65 to 125		-40 to 80 -40 to 150 -65 to 125				
CH-WTR	Chamber temperature, °C Absolute temp. range, °C Differential temp. range, °C	-40 to 80 -40 to 150 -60 to 125	-40 to	o 80 o 150 o 125	-40 to 80 -40 to 150 -40 to 125					

Notes for Chamber Environment systems:

• Differential accuracy (°C): 0.020 (*at -20 < T ambient < 80*), 0.040 (*at T ambient < -20*). Referenced to a NIST-calibrated CI Systems master sensor.

• Stability (°C): 0.005 at $\Delta T < 10$, 0.010 at $\Delta T > 10$

» ABBREVIATIONS

Α	Absolute Blackbody model	LT	Low Temperature
D	Differential Blackbody model	HE	High Emissivity
BB	Blackbody	СН	Chamber Environment
Temp.	Temperature	STD	Standard Temperature Range
ET	Extended Temperature Range	HxWxD	Height x Width x Depth
WTR	Wide Temperature Range		

» ORDERING INFORMATION

Model: SR-800N - 1 2 - 3

1) Blackbody Emitter size

2) A (Absolute) or D (Differential)

3) Option

Examples: SR-800N-4D SR-800N-2D-CH-ET SR-800N-8A-WTR

Examples for systems and Special Applications

NUC Tower System (with 15 controlled temperature blackbodies)

The NUC (Non-Uniformity Correction) Tower is ideal for testing multiple cameras or detectors for fast NUC tables, including ambient temperature reference.

The system delivers a fast NUC process at three different temperatures.

It is used for enhancing the throughput of mass production cameras and detectors inside or outside an environmental chamber.

The system consists of ten high emissivity and uniformity blackbodies and five high emissivity and uniformity surfaces at ambient temperature.

The high-accuracy controllers ensure that all surfaces are within an accuracy better than 0.015°C.

The blackbody controllers are mounted in a standard rack mount and communicate with one central PC.

ww.ci-systems.com

T1	T2	T(ambient)	
5.00	60.00	25.15	8.m.
5.00	60.00	25.82	
5.00	60.00	24.98	
5.00	60.00	24.86	
5.00	60.00	24.61	

POLYTEC GmbH T: +49 (7243) 604-4540 Polytec-Platz 1 - 7 Fax: +49 (7243) 699 44 D-76337 Waldbronn E-Mail: wl@polytec.de GERMANY www.polytec.de

1.9 μm & 2.2 μm EXTENDED InGaAs SWIR CAMERA

1.1 - 1.9 μm or 1.3 - 2.2 μm

600 FPS

< 45 e⁻ RON or < 50 e⁻ RON

InGaAs 640x512 15 µm pixel pitch

SDK compatible with µManager, LabVIEW, MatLab, 🮯, 🥝, 🥐

APPLICATIONS

ASTRONOMY:

Adaptive Optics Hyperspectral Imaging Laser Communications

SURVEILLANCE: LiDAR Long Range Imaging INDUSTRY: Multispectral Imaging Quality/Production Control Laser beam characterization

LIFE SCIENCES: Spectroscopy Fluorescence Microscopy

RY: LIFE SCIE

www.first-light-imaging.com

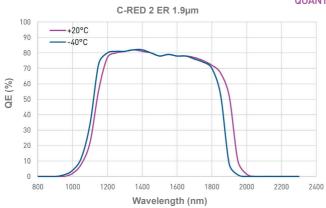
HIGH SPEED EXTENDED SWIR

C-RED 2 EXTENDED RANGE 1.9µm & 2.2µm PERFORMANCES

	C-RED 2 ER 1.9µm	C-RED 2 ER 2.2µm	
TEST MEASUREMENT*	Result	Result	Unit
Full sensitivity range (QE >10%)	1100 - 1900	1300 - 2150	nm
Quantum Efficiency >70%	1150 - 1800	1380 - 2050	nm
Maximum speed Full Frame	6	00	FPS
Readout Noise at high gain, Tint @ 50µs, 600 FPS Full Frame	<50 (@ -40°C)	<40 (@ -55°C)	e-
Dark Current + background	20 (@ -40°C)	120 (ଜ -55°C)	ke/p/s
Quantization	1	4	bit
Operability	> 95 (@ -40°C)	contact us	%
Image Full well capacity at low gain, 600 fps	15	00	ke-
Image Full well capacity at med gain, 600 fps	1:	30	ke-
Image Full well capacity at high gain, 600 fps	3	4	ke-
Maximum speed in 32 x 4 (min)	32	066	FPS
Maximum speed in 320 x 256	17	79	FPS
* Average values observed			

Average values observed

ADDITIONAL FEATURES


Outputs: USB 3.1 Gen 1 or CameraLink®

Up to 5 μs electronic shutter

Optical interface: C-Mount

LVTTL/LVDS synchronization

Software: GUI: First Light Vision - SDK: (C, C++, Python) / LabVIEW / µManager/ MatLab

FRAME RATE TABLE AT 600 FPS READOUT SPEED CAMERA LINK® OUTPUT

Columns								
		32	64	128	256	512	640	
	4	32 066	31 512	30 458	28 548	25 367	24 029	
	8	28 108	27 348	25 945	23 532	19 840	18 397	
	16	22 542	21 631	20 015	17 413	13 819	12 526	
Lines	32	16 147	15 254	13 736	11 455	8 599	7 646	
Lines	64	10 302	9 596	8 440	6 801	4 898	4 297	
	128	5 975	5 509	4 765	3 752	2 632	2 291	
	256	3 247	2 975	2 547	1 978	1 367	1 184	
	512	1 697	1 549	1 319	1 016	697	602	

For USB 3 Output: Max 9999 FPS

1800

2000

SWaP : H55 x W75 x L140 mm, 0.9 kg

POLYTEC GmbH Tel: +49 (72 43) 604-1540 Fax: +49 (72 43) 69944

Polytec-Platz 1 - 7

D -76337 Waldbronn E-Mail: ot@polytec.de

GERMANY www.polytec.de

The -55°C QE curve is extrapolated from the

experimental data of the -40°C QE curve

2200

2400

QUANTUM EFFICIENCY

100

90

80

70

60

50

40

30

20

10

0

800

1000

1200

1400

1600

QE (%)

-+20°C

-40°C

--55°C

C-RED 2 ER 2.2µm

VERY HIGH SPEED COMPACT STABILIZED SWIR CAMERA

SWIR 0.9 - 1.7 µm

600 FPS

<30 e- RON

640 x 512 InGaAs, 15 μm pixel pitch

93 dB and true 16 bits High Dynamic Range

SDK compatible with µManager, LabVIEW, MatLab, 🞯, 🧿, 🍓, 🔁

STABILIZED InGaAs CAMERA WITH INDUSTRIAL DESIGN

Smart algorithm for temperature stabilization

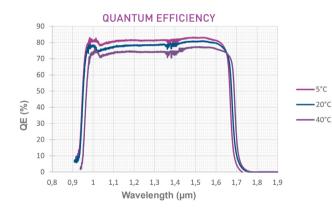
APPLICATIONS

INDUSTRY:

Non-destructive inspection Quality and production control Waste sorting Welding control Additive manufacturing Laser beam profiling

SCIENCE & ASTRONOMY: Hyperspectral and multispectral imaging Microscopy Free Space Optics

SURVEILLANCE: Thermography Unmanned aerial vehicle Maritime surveillance Security / night vision



C-RED 2 LITE PERFORMANCES

FEATURES*	FEATURES*					
C		640 x 512	pixels			
Sensor size		0.3	Мр			
Pixel pitch		15	μm			
Maximum speed Full Fram	e	600	FPS			
Readout Noise at high gain	, Tint at 50 μs, 600 FPS Full Frame at 5°C	<30	e-			
Quantization		14	bit			
Flat Quantum Efficiency 1.0	> 70	%				
Operability due to signal re	> 99.8	%				
Operating Temperature (ca	se)	-40 to +70	°C			
Detector Operating Temper	rature (depending on setup and environment)	-40 to +60	°C			
Max ΔT° between case and	sensor	25	°C			
	low gain	1.4	Me-			
Image Full well capacity	med gain	115	ke-			
	high gain	34	ke-			
Maximum speed in 32 x 4 (min) pixels	32066	FPS			
Maximum speed in 320 x 25	56 pixels	1779	FPS			

* Typic	al values
---------	-----------

ADDITIONAL FEATURES	
Data interface: USB 3.1 Gen 1 or CameraLink®	
Possible optical interface: C-Mount, CS-Mount	
LVTTL synchronization (5 V tolerant)	
High Dynamic Range mode: 93 dB and true 16 bits	
Industrial design: TEC stabilized camera, no fan	
Software: Graphical User Interface: First Light Vision - Software Development Kit: (C, C++, C#, Python, MatLab) / LabVIEW / µManager / Halcon	

FRAME RATE TABLE CROPPING MODE CAMERA LINK® OUTPUT

	Columns									
		32	64	128	256	512	640			
	4	32 066	31 512	30 458	28 548	25 367	24 029			
	8	28 108	27 348	25 945	23 532	19 840	18 397			
	16	22 542	21 631	20 015	17 413	13 819	12 526			
Lines	32	16 147	15 254	13 736	11 455	8 599	7 646			
	64	10 302	9 596	8 440	6 801	4 898	4 297			
	128	5 975	5 509	4 765	3 752	2 632	2 291			
	256	3 247	2 975	2 547	1 978	1 367	1 184			
	512	1 697	1 549	1 319	1 016	697	602			

For USB 3 output: max 9999 FPS

Passive heat sinks (left) and hydraulic cooling plate (right)

BACK VIEW WITH CAMERA LINK® OUTPUT

(Also available in USB 3 Output) SWaP : H65 x W65 x L78.1 mm, 460 g, 20W Max

C Polytec

POLYTEC GmbH Tel: +49 (72 43) 604-1540 Fax: +49 (72 43) 69944

Polytec-Platz 1 - 7

D -76337 Waldbronn E-Mail: ot@polytec.de

GERMANY www.polytec.de

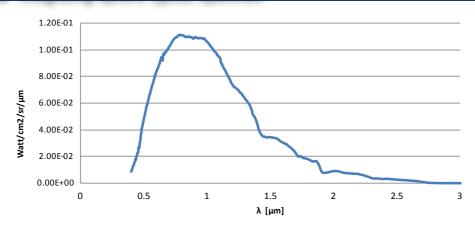
SR-300N Integrating Sphere

Standard Integrating Sphere

CI Systems offers a cost effective highly uniform integrating sphere for the VIS-SWIR wavelength range.

The system provides uniform radiance for testing of cameras that operate in a wide spectral range. Now offering three standard sizes: 1",2" and 4" output port diameters.

Using a highly reflective internal coating the system is able to produce uniformity of over 98% at its output port.


A continuous variable output is achieved using an high resolution motorized attenuator. Increased dynamic range can be achieved using optional neutral density filters.

Using a variety of light sources the system can be adapted to provide higher Luminance intensities and a wider dynamic range.

Low Light Integrating Sphere

CI Systems offers a cost effective highly uniform low light integrating sphere for the VIS-SWIR wavelength range.

The system provides uniform low light radiance for testing of night vision cameras that requires extremely low radiance. Now offering two standard sizes: 2" and 4" output port diameters.

Integrating Sphere Typical Spectrum

Note: Spectrum graph depends on the light source. There may be changes in spectrum when integrating other light sources.

» SR-300N Integrating Sphere

> FEATURES

- Modular design
- High uniformity
- VIS to SWIR radiation

» SPECIFICATIONS

	Wide	dynamic	range
--	------	---------	-------

- ft-L or W/sr-cm2 calibration
- ► Friendly user interface

	SR300N - 1	SR300N - 2	SR300N - 4	SR300N -L-2	SR300N - L-4
MODEL	Standard	Standard	Standard	Low Light	Low Light
Diameter of exit aperture	1" (25.4mm)	2" (50.8mm)	4" (100mm)	2" (50.8mm)	4" (100mm)
Diameter of sphere	4" (100mm)	8" (200mm)	12" (300mm)	8" (200mm)	12" (300mm)
Diameter of top sphere	-	-	-	4" (100 mm)	4" (100 mm)
Light source (default) (2)	halogen	halogen	halogen	halogen	halogen
Color temperature (3)	2856°K	2856°K	2856°K	2856°K	2856°K
Luminance (standard)	1000 ft-L	1000 ft-L	1000 ft-L	1 ft-L	1 ft-L
Luminance (minimum)	0.1 ft-L	0.1 ft-L	0.1 ft-L	1*10^-5 ft-L by default; other optional	1*10^-5 ft-L by default; other optional
Luminance (maximum)	10,000 ft-L	10,000 ft-L	3000 ft-L	10 ft-L by default; other optional	10 ft-L by default; other optional
Luminance uniformity	> 98%	> 98%	> 98%	> 98%	> 98%
Spectral range (4)	0.44 to 1.9µm	0.44 to 1.9µm	0.44 to 1.9µm	0.44 to 1.9µm	0.44 to 1.9µm
Resolution	15bit	15bit	15bit	15bit	15bit
Input ports	Up to 3	Up to 3	Up to 3	Up to 2	Up to 2
Detector type (default) (5)	Silicon detector	Silicon detector	Silicon detector	Silicon detector	Silicon detector
Controller size & weight	350X233X125mm (5Kg)	350X233X125mm (5Kg)	350X233X125mm (5Kg)	350X233X125mm (5Kg)	350X233X125mm (5Kg)
Sphere weight	2.5Kg	3.5Kg	5.5Kg	9.5Kg	22Kg
Line voltage	110/220 VAC, 50/60Hz	110/220 VAC, 50/60Hz	110/220 VAC, 50/60Hz	110/220 VAC, 50/60Hz	110/220 VAC, 50/60Hz

≫ OPTIONS

- (1) Option for manual or fully automated motorized illumination control
- (2) Optional light source: LED's
- (3) Other color temperatures are optional
- (4) Option for enhanced spectral range for SWIR up to 2.5 μm

POLYTEC GmbH

T: +49 (7243) 604-4540

- (5) Optional InGaAs detector
- (6) Optional motorized filter wheel for additional calibrated spectral output, up to 8 filters
- (7) Option for radiometric calibration: Multiple calibrations at spectral bands upon request

Polytec-Platz 1 - 7

Fax: +49 (7243) 699 44

- (8) Increased dynamic range by adding ND filters at the sphere's output aperture
- (9) Low cost version: Standalone Integrating sphere without controller

Motorized filter wheel

GERMANY www.polytec.de

C Polytec

April 2019

D-76337 Waldbronn E-Mail: wl@polytec.de