
AUTHORS

Gerardo Pardo-Castellote
Chief Technology Officer, RTI

Bert Farabaugh
Director of Field Application Engineering, RTI

Andy Krassowski
Field Application Engineer, RTI

ABSTRACT

To address the communication needs of distributed applications,
a family of trusted and proven specifications is available called
Data Distribution Service (DDS™). Many different types of
distributed applications can use the DDS infrastructure as the
backbone for their data communications. This paper presents
an overview of distributed applications, describes the core
specifications of DDS and its components, and discusses how
DDS can help developers design distributed applications and
achieve data-centricity.

TYPICAL DISTRIBUTED APPLICATIONS

One requirement common to all distributed applications is the
need to pass data between different independent modules
or components. These modules may execute on the same
processor, or spread across different nodes. It is common to
have a combination — multiple nodes, with multiple processes
on each one, each containing one or more modules.

Each of these nodes or processes is connected through a
transport mechanism such as Ethernet, shared memory or
Infiniband. Basic protocols such as TCP/IP or higher-level
protocols such as HTTP can be used to provide standardized
communication paths between each of the nodes. Shared
memory (SHMEM) access is typically used for processes
running in the same node.

Figure 1 shows an example of a simple distributed application.
In this example, the embedded single board computer (SBC)
is hardwired to a temperature sensor and connected to an
Ethernet transport. It is responsible for gathering temperature
sensor data at a specific rate. A workstation, also connected to
the network, is responsible for displaying that data on a screen
for an operator to view.

One mechanism that can be used to facilitate this real-time
information exchange is DDS.

Figure 1. Simple Distributed Application

WHAT IS DDS?

DDS is a family of standards that specify the API, protocol,
and security mechanisms that can be used by distributed
applications to exchange real-time data. The software application
programming interface (API) used by applications is based on a
secure, Quality of Service (QoS)-aware “Data-Centric Publish-
Subscribe” (DCPS) model. This means that applications need
only be concerned with the Data that they wish to produce or
consume, as well as the desired QoS. The DDS infrastructure takes
care of the rest. Since DDS is implemented as an “infrastructure”
solution, it can be added as the communication interface for any
software application.

Advantages of DDS:

• Open standard and ecosystem. All aspects are governed
by Object Management Group® (OMG®) standards,
including the application APIs, Wire Protocol, Type
System, Serialization formats and Security mechanisms.
There is a rich ecosystem of vendors providing DDS-based
products and applications.

• Based on a simple “Publish-Subscribe” communication
paradigm. Supports one-to-one, one-to-many, many-to-
one and many-to-many communications.

• Flexible and adaptable architecture that supports “auto-
discovery” of applications and endpoints.

An Introduction to DDS and
Data-Centric Communications

WHITEPAPER

http://www.rti.com

WHITEPAPER • AN INTRODUCTION TO DDS AND DATA-CENTRIC COMMUNICATIONS

2

• Built-in mechanisms to monitor application and endpoint
presence, availability and liveliness.

• Low overhead and serverless, so it can be used with high-
performance systems.

• QoS-aware. Allows applications to specify non-functional
characteristics of each dataflow, such as reliability,
durability, lifespan, ownership, liveliness, etc. Developers
can retain complete control of the individual dataflows in
the system.

• Deterministic data delivery, so it can be used with real-
time systems.

• Scalable, so it can handle large systems with thousands of
applications and hundreds of thousands of individual data
items.

• Efficient use of transport bandwidth.

• Fine-grained data-centric security. Every node that
joins the system is authenticated, and fine-grained
policies control what information each node can publish
and subscribe. Dataflows are separately isolated and
protected cryptographically.

Figure 2. The DDS Infrastructure

As shown in Figure 2, DDS provides an infrastructure layer that
enables many different types of applications to communicate
with each other.

The DDS specifications are governed by the OMG, which is the
same organization that governs SysML, UML® and many other
standards. A copy of any DDS specification can be obtained
from the OMG website at www.omg.org/spec or www.dds-
foundation.org/omg-dds-standard/. By formally specifying
the on-the-wire data format, security mechanisms, Discovery
protocol, APIs for multiple languages, and QoS behaviors, DDS
enables developers to leverage proven techniques and future-
proof their designs.

WHAT IS “PUBLISH-SUBSCRIBE”?

Publish-Subscribe (pub-sub) applications are typically built as
a composition of modules that communicate with each other
by sending (publishing) data and receiving (subscribing)
data anonymously. Usually, the only thing a publisher needs
in order to communicate with a subscriber is the Topic name
(this identifies the flow) and the associated Data-Types (this
defines the application-level APIs to read/write the data and
the mechanisms to convert from application data to a network
representation). The publisher does not need any information
about the subscribers, and vice versa.

The pub-sub infrastructure is capable of delivering that data
to the appropriate nodes—without having to manually set up
individual connections. Publishers are responsible for gathering
the appropriate data and sending it out to currently registered
subscribers. Subscribers are responsible for receiving data
from the appropriate publishers and presenting the data to the
interested user application.

WHAT DOES “DATA-CENTRIC” MEAN?

Data-centric refers to an architecture where data is the central
aspect, while applications may come and go. In these systems,
the data model precedes and outlives the implementation of
any given application.

A data-centric communication infrastructure such as DDS
provides the ability for distributed applications to “share state”
instead of simply exchanging messages. Message exchange
becomes a means to an end. With data-centric communications,
it’s possible to notify applications of relevant changes to the
shared state, including changes to data values, the presence
of new data-objects, and even the availability and liveliness of
other applications accessing the shared state.

Data-centric communications can provide stronger consistency
models to applications (e.g., eventual consistency), which greatly
facilitates building robust and highly-available applications.

The data-centric model also provides a mechanism for
applications to be decoupled in time. For example, a late-joining
application can just observe the current state in order to “catch
up” with the rest of the system. It does not need to process all
the intermediate messages that caused the past state changes—
rather, it only needs to focus on the end result.

A calendaring system provides a good example of shared
state. Looking at the calendar gives you a snapshot of all
the current appointments. Messages are sent to update the
calendar (create/delete or change appointments), but the most
important thing is the end result. Without support for accessing
the (calendar) shared state, applications would have to process
all the intermediate messages to arrive at the current state of
the calendar.

Being data-centric, DDS provides APIs and protocols that go
beyond message exchange and allow accessing and updating
of the shared state.

http://www.rti.com
http://www.omg.org/spec
https://www.dds-foundation.org/omg-dds-standard/
https://www.dds-foundation.org/omg-dds-standard/

WHITEPAPER • AN INTRODUCTION TO DDS AND DATA-CENTRIC COMMUNICATIONS

3

WHAT DOES QoS-AWARE MEAN?

A QoS-aware communication infrastructure such as DDS
provides the ability to specify various non-functional
characteristics (Quality of Service parameters) regulating the
exchange of information.

Functional characteristics of a system describe what the system
should do—in other words, the functions it performs. Applied
to the Publish-Subscribe infrastructure, it dictates the Topics it
should publish and subscribe, the associated Data Types, when
data-objects should be created and deleted, etc.

Non-functional characteristics of the system describe how the
system should perform those functions. Applied to the Publish-
Subscribe infrastructure, it dictates many characteristics of the
information exchange, such as the use of various protocol-level
mechanisms to ensure reliable data delivery, monitor application
availability, ensure data freshness, control bandwidth and
resource usage, etc.

DDS QoS parameters allow system designers to construct
a distributed application based on the requirements for,
and availability of, each specific piece of data. This can be
used to optimize your distributed application to its specific
requirements.

WHAT IS DATA-CENTRIC SECURITY?

Secure systems must protect the Confidentiality and the
Integrity of the information, as well as provide Authentication
and Access Control mechanisms to ensure data is only accessed
by the intended applications.

DDS provides standard fine-grained security mechanisms that
Authenticate each application prior to allowing it to join a DDS
domain. Furthermore, fine-grained permissions control the
Topics that each application can read and write, and built-in
cryptographic mechanisms separately protect each dataflow
end-to-end, ensuring the integrity and/or confidentiality of
the data. A detailed description of the provided mechanisms is
beyond the scope of this paper, but the details may be found
in the DDS-Security™ specification available from the OMG (see
www.omg.org/spec/DDS-SECURITY/).

HOW DOES DDS HELP DEVELOPERS?

Solutions for using a pub-sub communication mechanism have
typically been accomplished with proprietary solutions. DDS
formalizes the QoS-aware Data-Centric Publish-Subscribe
communication paradigm by providing a standardized
interface and the necessary protocols for achieving the required
functionality.

In the example shown previously in Figure 1, DDS would
be a software module on both the embedded SBC and the
workstation. On the embedded SBC side, DDS would enable
publishing of the temperature sensor data with specified
delivery behaviors specified through QoS parameters. On the
workstation side, DDS would enable a declared subscription
to receive the temperature sensor data according to specified
reception characteristics defined by QoS parameters.

By relying on a specification that governs the dissemination
of data and also provides access to shared state, distributed
application developers can concentrate on the operation of
their specific modules—without worrying about how they are
going to communicate with the other modules in the system.

Applications that gather or generate data (through interfaces
with sensors, files, on-board data computations, etc.) can use
the DDS framework to send (publish) their data. Similarly,
applications that need data from other applications in a
distributed system can use the DDS framework to receive
(subscribe to) specific data items. DDS handles all of the
communications between publishers and subscribers.

By employing the pub-sub methodology for data
communications, DDS abstracts communications between
data senders and receivers. Publishers are not required to know
about each individual receiver—they only need to know about
the specific Topics that are being shared and how to send it.
The same is true for subscribers. Subscribers do not need to
know where the published data is coming from; they only need
to know about the specific data type they wish to receive and
how to receive it.

Figure 3. Simple Distributed Application with DDS

In Figure 3, the Embedded SBC publishes data packets with a
simple “write” call using the current temperature sensor data as
a parameter. On the workstation side, the application may either
block while waiting for data to be available, set up a callback
routine to be notified immediately when data arrives, or check
its local cache on-demand to access the latest value.

AN OVERVIEW OF DDS ENTITIES

The DDS API defines the following entities:

• DomainParticipant
• DataWriter
• Publisher
• DataReader
• Subscriber
• Topic

http://www.rti.com
https://www.omg.org/spec/DDS-SECURITY/

WHITEPAPER • AN INTRODUCTION TO DDS AND DATA-CENTRIC COMMUNICATIONS

4

Figure 4 shows how entities in DDS are related. The following
sections contain more detailed descriptions of the entities used
within DDS.

Figure 4. DDS Entities

In Figure 4, DomainParticipants join a DDS Domain. The domain
represents a shared data-space (databus) that provides access
to the shared state. The shared state is organized into named
Topics. Each Topic may contain multiple data-objects. Each
data-object is identified by the value of the designated key-
fields within the object. Data is sent and the data-objects are
updated using a DataWriter. Each DataWriter is associated with
a single Topic so it can only be used to send or update data-
objects belonging to that Topic. Likewise, the data-objects are
accessed using a DataReader. Each DataReader is associated
with a single Topic and can only access and receive data-
objects belonging to that Topic. Publishers are used to group
and manage DataWriters. Subscribers group and manage
DataReaders.

DOMAINS AND DOMAINPARTICIPANTS

The Domain is the basic construct used to bind individual
applications together for communication. A distributed
application can elect to use a single domain for all its data-
centric communications.

Figure 5 shows an example of a system with six applications on
five nodes, all communicating in the same Domain.

Figure 5. System with Single Domain

DDS also has the capability to support multiple domains, thus
providing developers a system that can scale with system needs
or segregate based on different data access needs. When a
specific data instance is published on one domain, it will not be
received by Participants attached to any other domains.

Multiple domains provide effective data isolation. One use case
would be for a system to be designed wherein all Command/
Control related data is exchanged via one domain, while Status
information is exchanged within another.

In Figure 6, three applications are communicating Command/
Control data in Domain A and three other applications are
communicating Status data in Domain B. For very large
systems, developers may want to have different domains for
each functional area in their overall system.

Multiple domains are also a good way to control the introduction
of new functionality into an existing system. Suppose you have
a distributed application that has been tested and validated
as working correctly and then need to add new functionality.
You want to minimize the impact of the new functionality and
preserve the existing capability without breaking it.

In Figure 6, a new domain is added to the existing application.
The new dataflows in Domain C will not affect the existing
dataflows in the old domains. The new domain provides an
isolated container for testing the new functionality. After testing
is complete, the new applications (App 7 and App 8) can be
added to the original system simply by changing their specified
domain.

Figure 6. System with Multiple Domains

An application uses a “DomainParticipant” to join a DDS Domain.
The DomainParticipant enables a developer to specify default
QoS parameters for all Data Writers, Data Readers, Publishers
and Subscribers in the corresponding domain. Default listener
callback routines can be set up to handle events or error
conditions that are reported back to the application by the DDS
infrastructure. This makes it easy to specify the default behavior
that an application will follow when it receives notifications for
which it hasn’t set up specific listener routines on the associated
entities: Publisher, Subscriber, Data Writer or Data Reader.

A DDS domain is identified by two parameters: An integer
domain ID and a string domain Tag. These are specified when
each DomainParticipant is created. Only participants that
specify the same values for both parameters (ID and Tag)
will join the same Domain and thus be able to discover and
communicate with each other.

http://www.rti.com

WHITEPAPER • AN INTRODUCTION TO DDS AND DATA-CENTRIC COMMUNICATIONS

5

DATAWRITERS AND PUBLISHERS

DataWriters are the primary access point for an application to
publish data into a DDS domain. Once created and configured
with the correct QoS settings, an application only needs to
perform a simple write call, such as in this C++ example:

writer->write(data, instance_handle);

The sending application controls the rate at which data is
published. Subscribers may have different requirements for
how often they want to receive data. Some subscribers may
want every individual sample of data, while others may want
data at a much slower rate. Some Subscribers may want to see
every update to an object, while others are more interested in
the latest update (i.e., the current state). This can be achieved
by specifying different QoS policies, such as HISTORY or
TIME_BASED_FILTER. If a time-based filter is specified for
a DataReader, then the DataWriter can avoid sending data
updates to that reader any faster than it actually requires. This
would therefore reduce overall network bandwidth. When the
write is executed, the DDS software will copy the data from
the local Data Writer cache into the local caches of each of
the DataReaders for the Topic. Figure 7 shows how the entities
(DomainParticipant, Topic, DataWriter and Publisher) needed
to publish data are related.

Figure 7. Publication Model

Publishers are used to group together individual DataWriters. A
developer can specify default QoS behavior for a Publisher and
have it apply to all the DataWriters in that Publisher’s group.

DATAREADERS AND SUBSCRIBERS

A DataReader is the primary access point for an application
to access data in the DDS domain. Figure 8 shows the entities
associated with subscriptions. Once created and configured
with the correct QoS, an application can be notified that data is
available in one of three ways:

• Listener Callback Routine
• Polling the DataReader
• Waiting on a WaitSet until specific Conditions trigger

The first method for accessing received data is to set up a
listener callback routine that DDS will call immediately when
data is received. You can execute your own specific software
inside that callback routine to access the data.

The second method is to “poll” or query the local DataReader
cache to determine if data is available.

The last method is to set up a “WaitSet”, on which the
application waits until a specified set of conditions are met and
then accesses the data from the DataReader.

Figure 8. Subscription Model

Having these three methods gives developers flexibility in
accessing data. Accessing data is accomplished by calling
take() or read() on the DataReader. The take() operation
removes the data from the local DataReader cache after the
application uses it; the read() operation leaves the data on the
local DataReader cache after the application uses it, allowing
the application to access the data multiple times.

Subscribers are used to group together individual DataReaders.
Similar to Publishers before, this allows you to configure a
default set of QoS parameters and event handling routines that
will apply to all the DataReaders in that Subscriber’s group.

TOPICS

Topics provide the logical connection between DataWriters,
DataReaders and the shared global data-space (Domain).

In the shared data-space, each topic is identified by a Topic
Name which is a simple string. The name uniquely identifies the
Topic within the DDS Domain.

If you are familiar with Publish-Subscribe systems, you may think
of each Topic as identifying a separate information flow. From
the data-centric perspective, each Topic represents a separate
collection of data-objects. All data-objects in a Topic either have
the same Type or closely-related (compatible) types. Moreover,
each data-object is identified by the values of certain fields in
the data-object that have been designated as the “key fields”.

Topics in the shared data-space will group related objects
whose state is observed collectively. For example, an air-traffic
management application may use a Topic called “FlightStatus”
to share the current location and status of all flights. Each
individual flight could be identified by a combination for key
fields (e.g., Airline and Flight Number), or some other unique
identifier (e.g., the aircraft Tail Number) could also be used as
the key. Grouping all these objects into a single “FlightStatus”
Topic allows a single DataReader to observe (subscribe) to the
status of multiple flights, be notified of the creation/appearance
and completion of flights, etc. Likewise, a single DataWriter can
be used to update multiple flights.

http://www.rti.com

WHITEPAPER • AN INTRODUCTION TO DDS AND DATA-CENTRIC COMMUNICATIONS

6

For more details on the use of keys, see below under “Topic
Keys.”

Each DomainParticipant must create local Topic objects to
identify the shared data-space topics it wants to access (read
or write). When creating the local Topic object, the application
must specify both the Topic name and an associated data-type.

To publish data, the application creates a DataWriter object and
associates it with a local Topic. Likewise, to subscribe to data,
the application creates a DataReader object and associates it
with a local Topic. For communication to occur, the Topic name
associated with the DataWriter must match the Topic name
associated with the DataReader. The Data Type, associated with
the DataWriter and DataReader topics, however, need not be
the same. They just need to be compatible. We will elaborate on
this further below.

DATA TYPES

In data-centric systems, the data that is published and
subscribed always has an associated Data Type. The DataWriters
and DataReaders are specific to the published/subscribed type
and deliver strongly-typed data to the application.

However, it is not required for the Data Types to be known at
compile time, because DDS provides both static and dynamic
APIs. For example, dynamic APIs enable applications to create
writers and readers of arbitrary types, with types defined or
discovered at run-time. Nevertheless, once a DataWriter or
DataReader is created, its type is fixed, even if accessed using
a dynamic API.

Strongly-typed systems provide stronger contracts, which
facilitates designing and composing modular systems. They also
provide more deterministic behavior and can leverage language
mechanisms for better performance and resource management.
These are all important aspects of real-time, dependable, safe,
critical-infrastructure systems, which form the usual application
space for DDS.

However, unless care is taken, distributed strongly-typed
systems can also be rigid and inflexible, preventing system
composability and evolution.

For this reason, DDS does not require that DataWriters
and DataReaders are associated with identical Data Types.
Rather, DDS only requires that the types are compatible, or
more precisely, that the type published by the DataWriter is
assignable to the one that is subscribed to by the DataReader.
The precise assignability rules, defined in the DDS-XTypes™
specification, are beyond the scope of this paper. In general,
the type assignability rules are defined to allow safe type
evolution – that is, the type of the DataWriter can differ from
that of the DataReaders, as long as it is possible for the reader
to understand the information it expects and not miss any
“essential” information needed to properly interpret the data.

The DDS specifications provide various mechanisms to define
Data Types. The most popular approach is to use the OMG
Interface Definition Language version 4.x (IDL4). IDL4 is both
an ISO and OMG standard language for defining Data Types
and interfaces. The syntax for IDL4 is very similar to C++.

The following primitive Data Types are supported by IDL4:

• char, wchar, octet
• int8, uint8
• int16, short, uint16,

unsigned short
• int32, long, uint32,

unsigned long
• int64, long long, uint64,

unsigned long long

• float, double, long double
• boolean
• enum
• bitmap, bitset
• string, wstring

For example, here is a definition of a Data Type used in the
popular RTI “shapes demo:”

@appendable
struct ShapeType {
 @key string<256> color;
 @range(0, 256) int16 x;
 @range(0, 256) int16 y;
 @min(10) uint16 size;
};

In this example, the type ShapeType is a Topic Type. The Topic
Name may be any string chosen by the application, such as,
“Square” or “Circle.” In addition, this example shows some IDL
keywords that are used to reflect various aspects of the fields.
The “@key” references the field(s) that will comprise the Topic
Key (described below) and the “@range” reference is to make
note of the fact that the values for x and y in this case can only
be between 0 and 256. A full list of IDL keywords can be found
in the OMG IDL specification.

TOPIC KEYS

Within the definition of the Topic Type, one or more data
members can be chosen to be a “Key” for the type. DDS uses
the value of the Key members to identify each separate data-
object within the Topic. Updates to Topic data-objects with
different keys are independent from each other. In other words,
an update of a Topic data-object identified by Key value K1
modifies the values for the remaining members in the K1 object,
but does not affect or replace the corresponding values of other
data-objects in the Topic. Using the “shapes” example above, a
data-object for Topic “Square” where the ShapeType member
color has value “Blue” updates is different from a data-object
in the same Topic “Square” where the color is “Green.” Hence,
an application can update the x, y and size values of the “Blue”
data-object within Topic “Square,” without impacting any other
data-objects on that same Topic (e.g., a “Green” data-object in
Topic “Square”).

DDS can retain a certain history of the updates made to each
data-object providing APIs to read the current and most recent
updates for each data-object (by specifying the Key).

DDS can also notify the application of the appearance and/
or disappearance of data-objects. For example, the reception
of data on Topic “Square” with a color value that was not
seen before, or the disappearance from the system of all the
DataWriters that were updating a particular data-object (e.g.,
the “Blue” data-object in Topic “Square”).

Keys may also be used to achieve finer control over dataflows.
Each separate Key value creates an independent information
flow and DataReaders can choose to only read data-objects
that have certain values of the Keys.

http://www.rti.com
https://www.rti.com/free-trial/shapes-demo

WHITEPAPER • AN INTRODUCTION TO DDS AND DATA-CENTRIC COMMUNICATIONS

7

The use of Keys is also important when building scalable
applications. Having a Topic with many keys is far more resource-
efficient than having many Topics (e.g., one per Key value). It can
also simplify application development and evolution. In the case
of the distributed application shown earlier in Figure 3, suppose
there were multiple embedded SBCs, each with their own
temperature sensor. Without Keys, you would need to create
individual Topics for each of the different SBC/temperature
sensor pairs. Topic names for these Topics might be:

• “Temperature_Sensor_1”
• “Temperature_Sensor_2”
• “Temperature_Sensor_3”
• And so on…

Despite each Topic having the same Data Type, the fact that
we are using different Topic names would force the creation of
multiple Topics and, correspondingly, multiple DataReaders and
DataWriters to read/write the separate Topics. If you wanted to
add another sensor into the system, you would have to: create a
new Topic, “Temperature_Sensor_N”; create a new DataWriter(s)
to write it; and create a new DataReader(s) to read it.

But with Keys, you would only need one Topic, named
“Temperature”, with the following Type definition:

struct TemperatureType {
 @key uint32 sensorId;
	 float	value;
};

When a Subscriber receives data from all of the Publishers of
“Temperature,” it will present it to the application relative to
its Key value, which in this case is the sensorId. New sensors
could be added without creating a new Topic. The publishing
application would just need to fill in the new sensorId when it
was ready to publish that data.

Keys facilitate many-to-one scenarios in which multiple
applications write data to the same Topic. As long as the
applications write separate keys, each flow can be kept
separately — and the values of one DataWriter do not conflict
with those written by the others. It is also possible for multiple
DataWriters to update the same data-object (i.e., write updates
that reference the same value for the Key members). This can
be used to provide redundancy and/or arbitrate the ownership/
control of specific data-objects. Redundancy and ownership
control scenarios are configured using the QoS policies
Ownership and Ownership Strength.

CONTENT FILTERED TOPICS

In addition to standard Topics, there are also constructs in place
for ContentFilteredTopics.

A ContentFilteredTopic allows a DataReader to specify a filter
expression that selects only a subset of the data samples
published on the specified Topic to be received and presented
to the subscribing application. In our simple example, this could
allow some subscribers to only receive and process data when
a temperature exceeded a specific limit of interest.

By leveraging the standardized solutions to common design
issues, DDS users are able to focus on their application logic
and let the communications framework take care of the data
movement as specified.

QUALITY OF SERVICE IN DDS

The provision of QoS policies for each DDS Entity is a significant
capability provided by DDS. Being able to specify different QoS
policies for each individual DomainParticipant, Topic, Publisher,
Subscriber, DataReader or DataWriter gives developers a large
palette from which to design their system. This is the essence of
the QoS-aware data-centricity provided by DDS.

The DDS QoS parameters include:

• Deadline
• Destination Order
• Durability
• Entity Factory
• Group Data
• History
• Latency Budget
• Lifespan
• Liveliness
• Ownership
• Ownership Strength

• Partition
• Presentation
• Reader Data Lifecycle
• Reliability
• Resource Limits
• Time-Based Filter
• Topic Data
• Transport Priority
• User Data
• Writer Data Lifecycle

Through the combination of these policies, a system architect
can construct a distributed application to address an entire
range of requirements — from simple communication patterns
to complex data interactions.

SUMMARY

The Data Distribution Service standard is a family of OMG
specifications that creates a simple yet powerful architecture
for information exchange and application integration.

Topics allow nodes and application modules to be abstracted
from each other, so nodes and modular components can enter
and leave the distributed application dynamically. DDS provides
a QoS-aware “data-centric” Publish-Subscribe model, so QoS
policies can be configured on a per-endpoint basis. This fine-
grained configurability is critical to supporting complex data
communication patterns.

DDS provides a standards-based API for sending and receiving
data in an expanding list of languages (C, C++, Java, C#, Ada
and Python). It provides the means to define data-models,
and a standard wire protocol to ensure interoperability
between modular components developed by different
vendors. It frees developers from having to worry about any
network programming, data serialization and representational
differences by using a single data-model.

Simply put, DDS distributes data “where you want it, when you
want it, how you want it.” The Publish-Subscribe model makes it
easy to specify the “where.” Data-centricity enables the “when,”
and QoS-awareness enables the “how.”

http://www.rti.com

8

WHITEPAPER • AN INTRODUCTION TO DDS AND DATA-CENTRIC COMMUNICATIONS

232 E. Java Drive, Sunnyvale, CA 94089
Telephone: +1 (408) 990-7400
Fax: +1 (408) 990-7402
info@rti.com

CORPORATE HEADQUARTERS
rti.com

rti_software

rtisoftware

company/rti

connextpodcast

rti_software

RTI, Real-Time Innovations and the phrase “Your systems. Working as one,” are registered trademarks or trademarks of Real-Time Innovations, Inc.
All other trademarks used in this document are the property of their respective owners. ©2022 RTI. All rights reserved. 50052 V1 0722

Real-Time Innovations (RTI) is the largest software framework company for autonomous systems. RTI Connext® is the world’s leading
architecture for developing intelligent distributed systems. Uniquely, Connext shares data directly, connecting AI algorithms to real-
time networks of devices to build autonomous systems.

RTI is the best in the world at ensuring our customers’ success in deploying production systems. With over 1,800 designs, RTI
software runs over 250 autonomous vehicle programs, controls the largest power plants in North America, coordinates combat
management on U.S. Navy ships, drives a new generation of medical robotics, enables flying cars, and provides 24/7 intelligence for
hospital and emergency medicine. RTI runs a smarter world.

RTI is the leading vendor of products compliant with the Object Management Group® (OMG®) Data Distribution Service (DDS™)
standard. RTI is privately held and headquartered in Sunnyvale, California with regional offices in Colorado, Spain and Singapore.

Download a free 30-day trial of the latest, fully-functional Connext software today: www.rti.com/downloads.

ABOUT RTI

FOR ADDITIONAL INFORMATION:

Dr. Gerardo Pardo-Castellote is Co-Chair Data Distribution Service
SIG for OMG and CTO of RTI in Sunnyvale, CA. He is the primary
author of many of the DDS specifications. Bert Farabaugh and
Andy Krassowski are members of the engineering staff at RTI.
RTI created the first commercially available implementation of
the DDS specification in its product line.

This paper is derived from the OMG specification Data
Distribution Service for Real-Time Systems, available free of
charge from www.omg.org. Please contact us at info@rti.com
if you have questions or comments regarding this whitepaper.

APPENDIX:
GLOSSARY OF TERMS USED IN THIS DOCUMENT

Callback Routine: A Callback routine is an application-provided
function that is called by the DDS infrastructure in order to
notify the application of relevant events. Callbacks are typically
called in the context of the DDS infrastructure threads, but
there are also mechanisms where applications can provide the
thread pools that execute these calls.

Container: A container is a logical grouping of items. Items can
be nodes, applications, publications and subscriptions.

Entity: An Entity in DDS refers to a class of Software Objects
that form the foundation of the DDS API. These objects allow
applications to control the operation of the DDS infrastructure,
join DDS Domains, define what is being pushed and subscribed,
access data, etc. The primary DDS entities are: Publishers,
Subscribers, DataWriters, DataReaders, DomainParticipants
and Topics.

Infrastructure: An infrastructure is a base platform interface
whereby all applications that are registered utilize a common
set of capabilities.

Messages (Data Samples): A message (otherwise known in
DDS as a Data Sample) is an individual packet of information
being delivered from a publisher to its intended subscribers.
Data Samples contain application-level data, as well as
information about the data (e.g., the timestamp, sequence
number, identification of the sender, etc.).

Nodes: A node is a computer element that is connected to
other nodes forming a network. Typically, nodes are distributed
and communicate with each other over a transport, such as
Ethernet.

Processes: Processes refers to a computer program composed
of one or more threads of execution running in the same address
space to perform a certain functionality.

RTOS: A Real-Time Operating System (RTOS) is an operating
system that provides deterministic timing and resource usage
behavior, such that applications are able to better predict their
timing behavior and consistently meet real-time constraints.

Socket: A socket is a typical mechanism provided by Operating
Systems that can be used to communicate between processes
which may reside in the same or different Nodes.

Topic: A Topic in DDS is the means by which data producers
are paired with consumers. In the shared data-space, the Topic
is defined by its string Topic name. Locally, each application
defines the Topics it uses by providing the Topic name and the
Data Type they intend to use with the Topics. The Data Types
used by different applications to communicate on a Topic need
not be identical. It is sufficient for types to be compatible.
This allows applications to evolve and modify the Data Types
without breaking interoperability.

http://www.rti.com
http://www.rti.com
http://www.rti.com
https://www.instagram.com/rti_software/
https://soundcloud.com/connextpodcast
http://www.rti.com
https://twitter.com/rti_software
https://www.facebook.com/RTISoftware/
https://www.linkedin.com/company/rti/
https://soundcloud.com/connextpodcast
https://www.instagram.com/rti_software/
https://www.linkedin.com/company/rti/
https://twitter.com/rti_software
https://www.facebook.com/RTISoftware/
http://www.rti.com/downloads
http://www.omg.org
mailto:info%40rti.com?subject=

