
Software Integrity
in the Age of Rising
Supply Chain Attacks
Protecting Code and Pipelines from Emerging
Threats, and enforcing Compliance

Table of content

Introduction: A False Sense of Security	 3

The Rise of Software Supply Chain Attacks	 4

What you need to know about Software integrity?	 5

What Exactly is Software integrity?	 5

What makes software supply chains an attractive target for attackers?	 5

Why is ensuring software integrity so difficult?	 6

Industry response and current challenges	 6

Rethinking Code Signing for Modern DevSecOps	 7

SignPath DevSec360: The New Standard for Zero Trust Software Security	 8

DeepSign	 9

Pipeline Integrity	 11

Integration into the development process	 12

Problems Solved & Key Benefits	 13

Four-Stage Maturity Model for Secure Pipelines	 15

Conclusion: From Technical Detail to Strategic Imperative	 16

About SignPath	 17

3

Introduction:
A False Sense of Security
Software supply chain attacks have become one of the most dangerous threats to IT systems. They allow attackers to infiltrate

entire networks by compromising a single weak link in the supply chain, including Open-Source projects, software vendors,

contractors, or internal development teams. Their impact is amplified by the fact that modern software ecosystems are complex

and interconnected, including CI/CD pipelines and automated deployment tools. Software powers nearly every critical business

function today, and this extensive reliance creates a broad attack surface. When trust in the integrity of a single component or

process is broken, it can cascade through the entire system and lead to widespread compromise and operational disruption.

And it‘s not just about malicious actors. Violations of software integrity can also occur unintentionally, through human error, flawed

processes, or automated workflows with no real oversight. Software is now developed in complex and fast-moving environments

that often prioritize speed and agility over security. This makes it incredibly difficult to ensure, let alone verify, that code remains

trustworthy, tamper-free, and secure throughout its lifecycle.

Traditional perimeter-focused security controls such as firewalls, endpoint protection, and access management are no longer

sufficient to address the risks inherent in modern software supply chains. While these measures protect runtime environments,

they do little to safeguard the integrity of development pipelines, build processes, or third-party dependencies. As a result,

organizations often overestimate their security posture, unaware that attackers can exploit upstream components long before

software reaches production.

Guaranteeing software integrity isn‘t just a technical challenge anymore; it has become a strategic pillar of cybersecurity. In this

paper, we’ll explore why maintaining integrity is so hard, why traditional approaches have failed and how modern organizations can

finally take control of their software supply chains.

4

The Rise of Software Supply Chain Attacks

Figure 1: Cyberattacks are rising sharply across almost all vectors 1

1 https://www.bdemerson.com/article/complete-cybercrime-statistics

Cybercrime causes massive business impact;
software supply chain attacks are increasing disproportionately.

10.5 Trillion US-$ Business Impact
Global cyber crime projected by 2025

Software Supply
Chain Attacks

Signed Malware, CI/CD Compromise,
Dependency Injection, Build Tampering

Malware &
Infrastructure Breaches

Ransomeware, Data Breaches, Insider
Threats, DDoS, Lateral Movement

Human &
Identity Attacks

Phishing, Social Engineering,
Credential Theft, Account Takeover

Cyberattacks are increasing across all fronts, but one trend is particularly alarming: the surge in software supply chain attacks. Long

overshadowed by more visible threat vectors, this area has rapidly become one of the most critical challenges in cybersecurity.

Already responsible for 20 to 25 percent of all security incidents, software supply chain attacks are growing at an unprecedented

pace. Between 2021 and 2023 alone, the number of such attacks increased by over 430 percent. No other category is growing

faster. This steep rise underscores the urgency to secure the entire development and delivery process, not just endpoints and

infrastructure.

During 2025, 45% of organizations are expected to be affected by software supply chain attacks, with an 80–90% increase projected.

These attacks exploit build infrastructure, dependencies, and developer workflows to compromise signed software releases,

making them hard to detect and expensive to contain. Critical components of modern software delivery such as CI/CD pipelines and

open-source packages are increasingly targeted.

This shift signals a dangerous evolution: threat actors are moving upstream, embedding themselves deeper into the software

development lifecycle. The result is a growing class of vulnerabilities that cannot be mitigated by endpoint or perimeter security

alone.

To respond effectively, organizations need to rethink their security approach by placing greater emphasis on software integrity:

securing development and release pipelines and fostering end-to-end trust across the software supply chain.

Without urgent action, the compounded effect of these attack vectors will erode digital trust, disrupt operations, and expose

businesses to long-term financial and reputational damage.

30-35% 35-40% 20-25%

10-12%
expected increase for 2025

30-40%
expected increase for 2025

80-90%
expected increase for 2025

5

What you need to know about Software integrity?

What Exactly is Software integrity?
Software integrity is a broad term that covers several critical properties of software, and of the systems running it.

Software integrity ensures that all software components remain authentic, verifiable, and free from interference across the entire

software lifecycle, from development to execution. The following key objectives can be grouped into two focus areas: Software

Integrity and Code Integrity.

Together, these principles form the foundation for maintaining trust in software, not just during development, but across every

stage of its delivery and use.

Process
Integrity

Code
Integrity

Software production process

No unauthorized changes are made to the source code, third-party components, build environments,
configurations, or any other part of the production.

Policy conformance and alignment with a secure software development lifecycle (SSDLC).

Deliverables

Software files originate from the stated publisher and have not been modified by third parties.

Release process

Only tested and approved releases enter distribution and update channels.

Installation and update process

Only verified and authorized software files are installed and updated on target systems.

System

Only approved and verified software is running on a given system. Nothing more, nothing less.

What makes software supply chains an attractive target for attackers?
Ensuring the integrity of the entire software lifecycle is far more than just a recommended best practice. It’s a critical line of

defense against modern cyberattacks.

From an attacker’s perspective, compromised software is a highly attractive entry point: if malicious code is successfully introduced

into a target system, it often already has access to sensitive data. If not, it creates an initial foothold from which attackers can

move laterally within the IT environment, escalate privileges, and ultimately compromise sensitive systems. Sometimes this

happens through an open “front door,” but more often through poorly secured side entrances, such as those commonly found in

development environments or within the software supply chain. Once established, these attacks are often hard or impossible to

detect.

Development and CI/CD environments are often much more flexible and less restrictive than production systems. Development

teams frequently have broad privileges, use a wide range of tools, and have direct control over build processes and deployment

artifacts. While this freedom accelerates software delivery, it also significantly expands the attack surface. The risk becomes

especially high when security policies are bypassed, incomplete patches are applied, or unvetted fixes are deployed. These

vulnerabilities often go unnoticed until they are actively exploited.

Table 1 - Integrity guarantees

So
ft

w
ar

e
In

te
gr

it
y

6

Many software vendors and subcontractors operate with smaller cybersecurity

budgets and less stringent security requirements than their customers such as

large enterprises or government agencies. This makes them attractive targets

for attackers seeking to gain access to downstream environments via trusted

components with potentially devastating impact: a successful attack on a widely

used component can affect thousands or even millions of systems worldwide.

Therefore, protecting source code alone is not enough. What matters is end-

to-end integrity. From the very first line of code through every review, handoff,

build process, and testing environment, all the way to final deployment. Only

through verifiable workflows, cryptographically secured artifacts, and strict

policy enforcement can a consistently trustworthy software development

process be established, forming the foundation for genuine supply chain

security.

Why is ensuring software integrity so difficult?
The challenges are numerous. Modern attackers deploy increasingly

sophisticated methods that directly target every stage of the software lifecycle:

from production through distribution, deployment, and updates. Without

adopting a zero-trust mindset for these processes, many opportunities exist for

software integrity to be compromised.

Any breach of network boundaries, or unauthorized access to user accounts

or credentials, can be the starting point for an attack. Insider threats, whether

disgruntled employees or external contractors with broad permissions, pose a

major risk. Upstream components, social engineering, and phishing are common

methods for attackers to gain the access they need to manipulate software

releases.

Moreover, security that depends on human carefulness or adherence to policies

is fragile. Simple negligence can have catastrophic consequences. Paper policies

that are difficult to enforce, or that obstruct agility and productivity, often fail in

practice.

Attackers only need to find a single vulnerability or oversight, while defenders

must be perfect. This imbalance is especially stark in software production,

where the attack surface is disproportionately large due to the complex and

intentionally agile interactions of people, tools, and processes.

Industry response and current challenges
The industry’s response has been mixed. On one hand, application security has

received increased attention, and there are promising initiatives to improve

software supply chain transparency, such as the standardization of Software

Bills of Material (SBOMs). These efforts aim to help organizations understand

and track the components used in their software.

On the other hand, the fundamental challenge remains: protecting software

integrity from advanced and persistent attacks is still in its early stages

of attention and investment. Many organizations have yet to implement

comprehensive solutions or adopt the zero-trust principles needed to defend

against these threats effectively.

2 Stuxnet, discovered in 2010, was the first widely published

and discussed instance of a cyberweapon specifically designed

to target industrial control systems (ICS). The worm exploited

multiple zero-day vulnerabilities and made use of stolen digital

code-signing certificates to appear trustworthy and bypass

security controls. This attack highlighted the critical importance

of software integrity, demonstrating how manipulated software

components and weak verification practices in the software

supply chain can be leveraged to execute highly targeted and

destructive operations.

See also: https://simple.wikipedia.org/wiki/Stuxnet

Real-world wake-up call:
the SolarWinds “Sunburst”
attack

This trend has been visible since

the 2010 Stuxnet2 attack, but it was

the 2020 “Sunburst” attack on U.S.

software vendor SolarWinds that

served as a massive wake-up call for

the IT industry.

A highly skilled Russian Advanced

Persistent Threat (APT) group

infiltrated SolarWinds’ network and

employed sophisticated techniques

to insert backdoors into its flagship

product.

These backdoors were then distributed

via regular software updates to

approximately 18,000 organizations

worldwide, including roughly 80% of

S&P 500 companies and numerous

government agencies across several

countries. The attackers used this

foothold to conduct espionage and

data theft on a massive scale.

Despite the severity of this attack,

supply chain compromises have

continued to occur, underlining how

difficult it is to fully secure software

supply chains and maintain software

integrity.

https://simple.wikipedia.org/wiki/Stuxnet

7

Rethinking Code Signing for
Modern DevSecOps
Code signing is widely regarded as a cornerstone of software integrity. It

enables users and systems to detect tampered artifacts, identify impersonation

attempts, and verify that a given software component has not been modified

after publication. With most platforms offering build-in or easily configurable

enforcement policies for verifying code signing signatures, code signing has

become both a standard and convenient method for establishing trust.

But this sense of trust can be misleading. While code signing is critical, it often

creates a false sense of security. Many organizations assume that a signed

artifact is automatically safe. In reality, signed malware, misused credentials,

and compromised signing workflows have been central to some of the most

damaging supply chain attacks in recent years.

Historically, attackers exploited weak key protection. Once inside a publisher’s

network, they could locate private code signing keys, often stored in plain files

and protected only by hardcoded passwords. Although these practices have

long been discouraged, they remained widespread until industry regulations in

2023 began requiring hardware-protected key storage for many platforms.

That change has reduced the risk of key theft. But it has not eliminated the

threat, it has merely shifted it.

Modern software development is fast-paced and automated. Manual signing

processes involving physical tokens or user intervention do not scale well.

They are too slow, too error-prone, and their perceived security benefit is

often undermined by repetition and operational fatigue. To keep up, many

organizations now rely on fully automated code signing systems that will sign

anything presented with valid credentials.

The consequence is that while private keys may be secure from direct theft,

attackers are now focusing on compromising build pipelines or directly signing

their code by stealing code signing credentials. If they succeed, they can still

sign malicious code. The mechanism is protected, but the outcome is the same.

Code signing remains essential, but it is not enough on its own. It must be part

of a broader integrity strategy that not only controls who is signing, but also

enforces what is being signed, how it is built, and that it meets defined security

policies.

But what does it take to truly deliver on code signing’s promise of software integrity?

The simplified answer is no longer sufficient: it’s not enough to ensure the integrity of artifacts after release - we must evolve from

code integrity to holistic software integrity. That means integrating artifact-level protection with robust measures that safeguard

the entire software development and delivery process. This includes code reviews, build pipelines, signing and release workflows,

key management, and policy enforcement.

Delivering on this promise requires more than a cryptographic signature. It calls for a platform that ensures integrity across the

entire software supply chain – secure by design, automated by default, and governed by enforced policies.

Definition Code Integrity

Code Integrity is the assurance that

software code remains authentic,

unaltered, and originates from a

trusted and/or well-known source

throughout its lifecycle. It is enforced

through digital signatures using public

key cryptography. A digital signature

allows systems to cryptographically

verify that the code has not been

modified since it was published and

signed by a legitimate developer or

organization. Code integrity helps

prevent tampering, unauthorized

modifications, and the execution of

untrusted or malicious code within

the software supply chain. It does not

provide any guarantees about the

software process or security practices,

the quality, or even of the intentions

of the verified publisher.

8

SignPath DevSec360: The New Standard for Zero Trust
Software Security
DevSec360 represents a holistic 360-degree approach to securing the entire software development lifecycle. The core principle is

Zero Trust. No step in the development or release process is trusted blindly; every action must be verifiably legitimate.

DevSec360 is built on two essential components: DeepSign and Pipeline Integrity. DeepSign applies cryptographic signing based

on the full structural depth of software artifacts and a broad set of verifiable integrity criteria, ensuring robust end-to-end trust.

Pipeline Integrity protects the entire CI/CD pipeline by automatically enforcing policies for source code management, build

processes, and signing, ensuring the trustworthiness of the entire software supply chain.

Figure 2: Development workflow with DevSec360

DevSec360 is the first platform to fully implement zero-trust principles across the entire software workflow. The solution

integrates seamlessly with existing CI/CD pipelines and provides centralized policy and key management as well as automatic policy

enforcement and auditing.

Development teams can continue to work in agile environments while security teams define and enforce policies. DevSec360

bridges both worlds without slowing down developers. In the face of increasing software supply chain attacks, DevSec360 ensures

that only verified artifacts from secure processes are signed using the organization’s trusted certificates.

This combination of automation and intentional distrust makes the approach unique and highly effective.

SAST,
SCA

Source
Control

Plan
& Code Build

CI / CD Pipeline

Separated - Advanced Code Signing

Pipeline Integrity

DeepSign

Unit
Tests Package

Malware
Scanning

Centralized key management
with HSM integration

DeepSign

Release
(re)signing

Release

Logging

Deploy/
Distribute

DevSec360
Pipeline Integrity DeepSign

9

DeepSign

Artifact-based signing with deep inspection and zero blind
spots

DeepSign is the advanced signing mechanism of the DevSec360 platform. Unlike

traditional code signing solutions, which typically transmit only a hash digest of

the file to the signing service, DeepSign is fully artifact-based: the complete file is

submitted to the platform for signing. This gives DevSec360 full visibility into the

artifact and enables comprehensive validation before any signature is applied.

Scanning & Verification of Incoming Artifacts: Every file is scanned using

up-to-date antivirus engines to detect malware. In addition, the platform

validates file structure and metadata against project-specific profiles. For

example, checking whether the declared publisher matches the expected

identity, or whether an installer includes only approved components.

DeepSign can also inspect and validate existing signatures of embedded

third-party or upstream components.

Nested Signing Automation: Another key strength of DeepSign is its ability

to process nested artifacts for files with signable internal components,

such as installers, packages, ZIP archives, or modular applications like Java

archives. The platform can automatically unpack these components, verify

and sign them individually, and reassemble the full package. This is all done

in a single signing process. Developers no longer need to create complex,

multi-step signing workflows in their builds.

Definition of a hash digest

A hash digest (or hash code) is a

mathematically derived numerical

representation of a larger piece

of data. Using cryptographic hash

algorithms, we can guarantee that

a hash digest cannot represent any

other data, therefore signing the hash

digest is equivalent to signing the

data. This leads to efficient processing

by dedicated key-protection hardware,

but it leaves code signing services

oblivious to the nature of the signed

artifact.

Figure 3 - DeepSign artifact configuration for an installer and its payload

10

Content-Aware Signing: DeepSign eliminates blind spots in the signing process. The platform knows exactly what it is signing

and will reject any signing request if the file doesn’t match expected formats or contains unexpected content. Unlike hash-

only approaches, this means attackers cannot slip in manipulated files because any deviation is detected and blocked. For

development, operations, and end users, this translates into the highest levels of signing security without requiring deep

technical effort.

Re-Signing Without Rebuild: Another major advantage: previously signed artifacts can be re-signed at a later stage. This

enables promoting release candidates after functional testing and additional security reviews, or handling certificate expiration,

algorithm changes, or key compromise. All earlier verifications remain intact, eliminating the need for a full rebuild and saving

significant time and drift risk.

Flexible PKI Integration: Cryptographic keys are stored in Hardware Security Modules (HSMs). The DevSec360 platform

supports both standard and Extended Validation (EV) certificates, issued by either public Certificate Authorities or private PKIs.

HSM
Options

DevSec360 SaaS
(recommended)

DevSec 360
Self-Managed

Shared
HSM

Cloud
HSM

Customer-
operated
HSM

Thales Luna cluster (HA)
operated by SignPath N/A

Thales Luna DPoD Cloud HSM

Thales Luna and other vendors

On-prem connector Direct integration

Table 2 - DevSec360 HSM options

11

Pipeline Integrity

Enforcing Security Policies Throughout the Development Process

Pipeline Integrity monitors and secures all steps leading up to the signing process. While DeepSign focuses on verifying the

resulting files, Pipeline Integrity ensures that the process used to create that file is trustworthy.

For every signing request, the platform automatically evaluates the CI/CD pipeline (i.e., the build process), including:

Source Code Provenance: It verifies that the build originates from the correct source code repository and the intended branch,

that code reviews were performed, and other repository-level criteria. This prevents any artifact from being signed if it comes

from an unauthorized or insufficiently protected repository or branch.

Build Process Integrity: Pipeline Integrity ensures the build or its artifacts have not been tampered with. It verifies that every

release actually originates from the specific build execution and was not swapped or altered during or afterward. Additional

policies include build agent conditions and caching restrictions. Even if signing credentials are misconfigured, an unauthorized

build will not be signed.

Compliance with Development Policies: Depending on the configured security policy, Pipeline Integrity also ensures all required

development procedures were followed. In addition to enforcing a continuous chain of code reviews, it can enforce execution of

security scanners and thresholds for security findings. Pipeline Integrity can be configured to only allow signing of artifacts that

are the result of reviewed, scanned, and approved source code.

Through these layered checks, Pipeline Integrity in interaction with DeepSign acts as the gatekeeper of the pipeline: only when all

conditions are met is the signing approved.

This zero-trust approach avoids problems that originate at the project or team level, such as insecure build configurations,

bypassing reviews, skipping tests or releasing unauthorized builds.

By enforcing these measures, Pipeline Integrity guarantees adherence to security policies within the development lifecycle and

effectively prevents human error or targeted attacks from compromising the signing and release process.

Figure 4 - Overview of verifications in DevSec360

12

Integration into the development process

How DeepSign and Pipeline Integrity Work Together in Practice

Integrating DeepSign and Pipeline Integrity into existing CI/CD pipelines is straightforward and requires minimal effort. Teams use

the DevSec360 plugin for their CI/CD platform to automatically submit release artifacts for signing. Supported platforms include

GitHub, GitLab, Jenkins, Azure DevOps, TeamCity and more to come.

Once the plugin is installed and project-specific parameters are configured, the process executes automatically. Each time a build

completes, the plugin transfers the release to DevSec360. The platform then verifies artifact and pipeline integrity, enforces all

configured policies and only then signs the release’s artifacts.

From the development team’s perspective, the integration is seamless. Developers continue to work with their usual tools and

workflows, while DevSec360 ensures that only verified and policy-compliant artifacts are signed. The signing keys remain securely

stored in hardware modules, and the entire process is logged and auditable.

DevSec360 acts as a transparent control layer at the release boundary, providing assurance that every signed artifact meets the

defined standards for security and integrity.

Figure 5 - Using DevSec360 in a GitHub Actions workflow

13

Problems Solved & Key Benefits
In summary, the DevSec360 Platform, featuring DeepSign, and Pipeline Integrity, delivers comprehensive protection for software

development and delivery.

Development teams benefit from a seamless, automated workflow, while security teams gain assurance that every released

software package is thoroughly validated, compliant, and securely signed.

This combination of integrity, efficiency, tracebility and transparancy lays the foundation for trustworthy software releases,

enabling marketing and design teams to translate the abstract topic of software security into clear, compelling visual concepts.

SignPath DevSec360

Capabilities Zero Trust
Platform Summary DeepSign Pipeline Integrity

Functional scope Zero-trust software
integrity

Integrated code signing
Policy verification and

enforcement

Provisioning of keys /
certificates

Signing functionality Deep support

Executables • packages •
installers • containers •

scripts • manifests •
SBOMs • config files

Attestations

Application security scope Secure code siging
Dev process and
pipeline security

Integrity guarantee End-to end software
integrity

Artifact integrity
Process and configuration

integrity

Artifact content integrity

Malware scan

Control-plane integration

Artifact origin integrity

Process and configuration

Signing operations Per release

File format support level Deep support
Existing signatures •

structure • metadata •
signing

Custom file formats

Signing of nested files

Supported platforms File-formats
Windows • Linux •

Kubernetes • Docker • Java •
Android • Embedded

SLSA • in-toto

Integration and configuration Declarative
Configuration of artifact
verification and signing

Process policy restrictions

Integration level CI/CD (declarative) Explicit CI/CD step
Control-plane CI/CD

integration

Single point of CI/CD
integration with isolated
credentials

Re-signing capability

14

SignPath DevSec360

Capabilities Zero Trust
Platform Summary DeepSign Pipeline Integrity

Authorization scope High-level
authorization

Projects •
signing policies

Repositories • branches •
build configurations

Permissions per project
(based on content)

(based on verified origin)

Authentication of
build systems

Attestations

Define & enforce
process policies

Dev process and
pipeline security

Approval of releases

Automated / Manual
approval

Quorum-based approval

Verified information Artifacts • processes Release artifacts
Process definition

and execution

Artifact information

Source code origin

Build system &
configuration

Security scans performed

Auditing and
traceability

Integrated • complete Signing process • artifacts Source and build process

Structured audit trail Deep audit information All input and output files
Policies • approvals •

attestations

Release-level auditability Signing policy • metadata
Full release context • build

workflow • build execution •
scanning results

Table 3 - DevSec360 HSM options

15

Four-Stage Maturity Model for Secure Pipelines
Creating a Secure Software Development Lifecycle (SSDLC) is a continuous journey. This four-stage maturity model helps

organizations assess their current posture and provides clear guidance to enhance trust, automation, and policy enforcement

across the pipeline.

Table 4 - Pipeline Security Maturity Stages

Stage Description

Ad-hoc:
Inconsistent Signing,
No Traceability

•	 SSDLC policies are only provided as paper policies.

•	 Code signing is performed manually, often by individual developers using
unmanaged keys.

•	 There are no enforced processes, no central oversight, and no audit trail.

•	 The pipeline is highly vulnerable to human error, credential misuse, and
undetected tampering.

Structured:
Centralized Keys,
Basic CI/CD Integration

•	 Key management becomes centralized and access-controlled.

•	 Keys are secured via HSMs or cloud-based hardware protection.

•	 Signing is integrated into CI/CD pipelines, often through scripts or plugins.

•	 Initial policies and approval steps are introduced, but enforcement
remains partial.

•	 Visibility improves, but auditability and consistency are still limited.

Trusted Traceability:
End-to-End Transparency
and Control

•	 The pipeline establishes a verifiable chain of custody for every artifact.

•	 Each component can be traced back to its original source, including who
made which changes and how artifacts were built and signed.

•	 Automated security and compliance scans are applied.

•	 Signing actions are logged, and artifacts become provably trustworthy.

•	 This transparency builds a solid foundation for regulatory compliance and
defense against supply chain attacks.

Zero Trust Integrity:
Fully Automated,
Policy-Driven,
Hardware-Backed

•	 At the highest level, the pipeline enforces strict, automated security
policies for every code change and artifact.

•	 Nothing is signed or deployed without verification.

•	 All processes are fully auditable and continuously monitored.

•	 The result is a resilient, trustworthy software supply chain aligned with
modern zero-trust security principles.

1

2

3

4

16

Conclusion:
From Technical Detail to Strategic Imperative
Software supply chain security has evolved from a specialized concern to a central responsibility. Modern attacks no longer focus

solely on code, but increasingly exploit weaknesses in development pipelines, target trusted signing systems, and manipulate

components deep within the supply chain. The consequences reach far beyond technical impact, affecting business continuity,

legal exposure, and long-term customer trust.

This development is mirrored by a tightening regulatory landscape. Frameworks such as the European Union’s Cyber Resilience

Act and NIS2 directive and others, as well as sector-specific compliance frameworks demand that organizations ensure and

demonstrate integrity, traceability, and security throughout the entire software lifecycle. These are no longer optional controls.

They are rapidly becoming legal obligations.

Organizations that establish secure development and signing processes today are better prepared for the future. Not only do

they reduce operational risk, but they also position themselves for regulatory compliance and greater resilience under pressure.

DeepSign and Pipeline Integrity are not marginal optimizations. They are essential for implementing security by design where it

matters most: at the boundary between development and operations (or distribution).

Delivering trustworthy software on scale requires more than policy. It requires automation, enforcement, continuous validation, and

complete visibility across the delivery process. The DevSec360 platform enables organizations and teams to achieve this without

slowing down development or adding unnecessary complexity.

Security is no longer a support function. It is an integral part of

the product, a differentiator in the market, and a prerequisite for

long-term competitiveness. Now is the time to make it part of the

process.

About SignPath
SignPath – Zero Trust Software Integrity for Modern Development Teams

SignPath is a European provider of software supply chain security based in

Vienna. Its platform, DevSec360, establishes a Zero Trust approach to software

development that goes beyond traditional code signing. By fully verifying all

security-relevant build information, the signing process becomes a technically

enforced release gate—enabling consistent policy enforcement directly within

the CI/CD pipeline.

DevSec360 combines centralized, artifact-based signing with automated

verification of source code origin, review status, build context, and policy

compliance. Only verified, authorized, and fully traceable releases are signed.

The integration is CI/CD-native and does not disrupt development processes.

Customers include organizations such as SolarWinds, Bosch, Dräger, Hitachi

Energy, or Airbus.

SignPath.com | Vienna, Austria

http://www.signpath.com

	Introduction:
A False Sense of Security
	The Rise of Software Supply Chain Attacks
	What you need to know about Software integrity?
	What Exactly is Software integrity?
	What makes software supply chains an attractive target for attackers?
	Why is ensuring software integrity so difficult?
	Industry response and current challenges

	Rethinking Code Signing for Modern DevSecOps
	SignPath DevSec360: The New Standard for Zero Trust Software Security
	DeepSign
	Pipeline Integrity
	Integration into the development process
	Problems Solved & Key Benefits

	Four-Stage Maturity Model for Secure Pipelines
	Conclusion:
From Technical Detail to Strategic Imperative
	About SignPath

