ferro.us systems

t

Ferrocene is Rust for
safety-critical and
embedded systems.

Ferrocene is ready-to-use Rust for automotive, medical
and industrial device development certified by the
team that is leading in all things Rust.

Rust is safer than C/C++. Rust is built
for speed with type- and memory-safe
programming to prevent errors and
designed to handle parallel
programming. Certification now lets
automotive and industrial clients take
advantage of that.

Ferrocene is downstream from the
Rust project: It works with existing
Rust infrastructure and the only
changes made in the code were to
cover testing requirements of 1ISO
26262, IEC 61508 and IEC 62304 and
qualification. All fixes are reported
upstream for constant improvement.

Rust is critical-systems ready: TUV
SUD conducted the audit and Ferrous
Systems - leading Rust experts -
supports the signed installers as well
as the nightly builds. The result is
Ferrocene - a quality-managed Rust
compiler - certified at the highest
safety standard levels.

Ferrocene is open source: The
source code is licensed under a MIT
OR Apache-2.0 license. This includes
all the qualification documents. A
paid license includes long-term
support, validated pre-built binaries
and the necessary certification for
automotive and industrial use.

www.ferrocene.dev

is qualified by
Ferrous Systems, who also:

Maintain open- Provide Rust Do custom
source projects: training: development:
e rust-analyzer * Intro to Rust Custom development
e rust itself e Advanced Rust of libraries, tools and
e bindgen e Embedded Rust board support
e sudo-rs e Management packages.
training

//! Fuel monitor library. RUS'I' macros derive .l.he
//!

//! Provides the [‘Monitor‘] type to track fuel levels.
/7!
//! Fuel levels are reported using the [‘Reading‘] type.

tedious boilerplate code for

you - without mistakes.
! [no_std]
! - Rust has rich data formatting,

/// Represents a single fuel reading
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)] Wl'l'hOU'l' heqp q”ocqﬂon.
#[repr(C)]

pub struct Reading(pub ul6); Rus-l- can use Gnd expor-l- C

/// Tracks fuel levels.
#[derive(Debug, Clone, Default)]
pub struct Monitor {

Rust’s code blocks are
/// A fixed-size buffer from the ‘heapless‘ project
data: heapless::HistoryBuffer<Reading, 64>,

functions.

} automatically executed as

impl Monitor { part of the unit test suite.

/// Create a new fuel monitor, containing no readings.

117 Your examples can never be

/17
/// let fm = fuel::Monitor::new(); out O'F dG'I'e
/17 :
pub fn new() -> Monitor {
BeSanns scerauiut) Ferrocene enables the use of Rust

}
. og 14
Add a fuel reading. in safety-critical spaces. It's

114 ™ qualified by TUV SUD for use with

/// # use fuel::{Monitor, Reading};
/// let mut fm = Monitor::new();

safety-critical and functional
/// fm.add_reading(Reading(100));

/1] safety systems. It is open-source
pub fn add_reading(&mut self, reading: Reading) {
self.data.write(reading); Gl’ld we offer |ong_.|.erm

}

support on a commercial basis.

///
/1/
Ll ¥
/// use fuel::{Monitor, Reading};
/// let mut fm = Monitor::new();
/// assert_eq!(fm.mean_reading(), None); // No readings
/// fm.add_reading(Reading(10));
/// fm.add_reading(Reading(20));
/// assert_eq!(fm.mean_reading(), Some(Reading(15)));
/1]
pub fn mean_reading(&self) -> Option<Reading> {
let sum: ubld = self.data.iter().map(|r| u6d::from(r.0)).sum();

the mean fuel reading in the history buffer.

