
aiT Worst-Case Execution Time Analyzer

Timing Guarantees for Real-Time Systems

aiT WCET Analyzer computes for the worst-case execution time of tasks in safety-critical tight bounds

systems. These bounds are i.e. they are valid for any input scenario and each task execution.safe,

aiT is based on statically analyzing a task's intrinsic , thus enabling the cache and pipeline behavior

development of complex hard real-time systems on state-of-the-art hardware.

Specifications (*.ais)

Entry point

Worst-case execution time

Visualization, Documentationvoid Task (void)
{
 variable++;
 function();
 next++;
 if (next)
 do_this();
 terminate();
}

clock kHz;10200
loop + loop exactly end;"_codebook" 1 16
recursion max ;"_fac" 6
snippet is not analyzed and takes max cycles;"printf" 333
flow + bytes / + bytes is max ;"U_MOD" "U_MOD"0xAC 0xC4 4
area from to is readonly;0x20 0x497

Application Code

 Executable

(*.elf /*.out)

Compiler

Linker

The Challenge:

· the execution time of a task is typically Measuring not

safe. It is often impossible to prove that all the

conditions determining maximum execution time are

taken into account. Code instrumentation and debug

information change the timing behavior.

· Hardware speculation by caches, pipelines, etc.

complicates the task of determining the WCET, since

the execution time of a single instruction may depend

on the . execution history

· Analysis methods that do consider not cache and

pipeline behavior typically seriously overestimate

the WCET, leading to a substantial waste of hardware

resources.

This is where aiT steps in:

· aiT-computed bounds are and valid for all inputs

each execution of a task. Extensive timing testing is

now a thing of the past.

· aiT directly analyzes binary executables. This means

that or the no modification of your tool chain

program's operational behavior and performance is

required.

· aiT-computed bounds are tight and reflect the real

performance of your system. Cache and pipeline

effects are fully taken into account. Ensuring deadline

adherence is no longer done at the expense of

hardware resources.

AbsInt Angewandte Informatik GmbH Science Park 1 D-66123 Saarbrücken Germany

phone: +49 681 383 60 0 fax: +49 681 383 60 20 info@absint.com www.absint.com

Why do you need aiT?

The worst-case execution time (WCET) of each task in a

real-time system has to be known prior to its execution.

In event-triggered or periodic systems (e.g. RMA), the

WCET is required for schedulability analysis; in time-

triggered systems (e.g. TTA, FlexRay, ...), it is required

for determining a static schedule.

The increasing performance of microcontrollers

enables more and more functionality to be implemen-

ted by a single embedded control unit. The software is

complex and the timing behavior of the interacting

software components rarely known. Typically it is not

practical – or even possible – to test the system with all

potential inputs.

aiT computes safe upper bounds on the WCET of each

task, providing full data and control coverage, enabling

timing safety.

aiT Features:

· of the analysis results providing Visualization

detailed information about key timing aspects, e.g.

the or the at any worst-case path machine state

given program point.

· Various , interactive , and statistics tables graphs

charts identify bottlenecks that let you quickly and

other areas of interest.

· Analysis for and report files documentation

certification integration purposes, as well as for

with numerous software development tools.

· Graphical . comparison of different analysis runs

Developers can quickly understand the effect of

program modifications on worst-case timing.

· Qualification Support Kits are available providing

support for automatic up to the tool qualification

highest criticality levels (DO-178B, DO-178C,

ISO26262, IEC 61508, EN 50128).

Supported processors: PowerPC 5xx / e200 (55xx, 56xx)

/ / e300 (603e, 82xx, 83xx) / 750/ 755 / 5777M / 5777C

7448 / 7447A, i386DX, AM486, Motorola 68020, ARM

Cortex M0 / Cortex-M1 / Cortex-M3 / Cortex-R4F /

Cortex-R5F, Infineon XMC4500 (ARM Cortex-M4), TI

TMS320C3x, TMS320F28, C16x/ST10, XC2365A-104F80L,

HC11, Star12/ HCS12/ HCS12X, TriCore 1197 / 1767 /

1782 / 1784 / 1796 / 1797, AURIX TC 2xx, AURIX TC3xx,

NEC/Renesas V850, LEON2, LEON3, ERC32.

If your processor is not listed above, please contact us.

Key Benefits:

· aiT provides and can replace error- WCET guarantees

prone methods based on testing and measuring,

ð .enhancing safety

· aiT has been qualified as a according verification tool

to various safety norms, including DO-178B/C for Level

A software,

ðenabling certification of safety-critical real-time

software.

· aiT provides automatic tool support for calculating the

WCET of your applications,

ð .saving development time

· aiT safely determines the timing behavior of interac-

ting software components,

ð .enabling software integration

· analysis enables cache and pipeline Interprocedural

behavior to be precisely predicted.

· The analyzer can be run in , enabling batch mode

seamless continuous verification.

· . Developers can Flexible annotation mechanism

provide programmer-specific knowledge to aiT to

further improve the analysis precision.

· aiT can be coupled with model-based code genera-

tors system-level scheduling tools and via an open

XML-based interface to provide timing information in

the development phase.

· on the worst-case path is Variable usage per context

displayed as flame graph, helping to optimize the

allocation of objects to memory regions.

AbsInt Angewandte Informatik GmbH Science Park 1 D-66123 Saarbrücken Germany

phone: +49 681 383 60 0 fax: +49 681 383 60 20 info@absint.com www.absint.com

StackAnalyzer – Stack Usage Analysis

StackAnalyzer automatically determines the worst-case stack usage of the tasks in your application.

Supported processors and compilers

·C16x/XC16x/ST10 (Tasking/Keil)

·TriCore, incl. AURIX (Tasking/gcc/Diab)

·PowerPC 32-bit / 64-bit (/Diab/CompCert

gcc/GHS/GHS Ada/GNAT/CodeWarrior/

DDC-1 Score)

·ARM (/TI/ARM/gcc/GHS/IAR/CompCert

Tasking/clang/HighTec/Diab/Keil MDK-

ARM/GHS Ada)

·NEC/Renesas V850/RH850 (GHS/Diab/

Renesas CS+)

·Renesas RX (IAR)

 For further targets, please contact us.

·Renesas SuperH (Renesas)

·TI C3x (TI)

·TI C28x (TI)

·TI MSP430(X) (IAR)

·x86 (/gcc/ICC/CompCert

cygnus/clang)

·M68K (HP/EDS/gcc/Diab)

·FR81S (Fujitsu)

·MCS51 (TI CC254x) (IAR)

·MIPS32 (gcc)

·S12Z (CodeWarrior)

·HCS12(X/XE) (Hiware/Cosmic/IAR)

·LEON2/LEON3/LEON4

(gcc/GNAT/clang)

·ERC32 (gcc/GNAT/clang)

·Freescale ColdFire (HP/EDS/gcc)

·dsPIC (Microchip)

·MCS251 (Keil)

·RISC-V (/gcc)CompCert

·Nios II (gcc)

·RL78 (IAR)

Call graph with stack usage annotations Control flow graph with

stack usage annotations

Stack overflow is now a thing of the past

Why do you need StackAnalyzer?

Stack memory has to be allocated statically by the programmer. Underestimating stack usage can lead to serious errors

due to . Overestimating stack usage means a waste of memory resources.stack overflows

· provides tool support to calculate the stack usage of your application. The analysis results are StackAnalyzer automatic

valid for and each task execution. all inputs

· analyzes the and does not rely on debug information, nor on instrumentation. StackAnalyzer binary executable

· and calls are taken into account. Inline assembly code library function

· and are taken into account. Recursions function pointers

· Automatic of call/control flow graphs with stack usage. visualization

· Current safety standards (DO-178B/C, ISO 26262, IEC 61508, EN 50128, etc.) require to ensure that no stack overflows

can occur. With , you can . AbsInt's Qualification Support Kits StackAnalyzer prove the absence of stack overflows

enable a up to the highest criticality levels.tool qualification

Stack usage contributions

per function

AbsInt Angewandte Informatik GmbH Science Park 1 D-66123 Saarbrücken Germany

phone: +49 681 383 60 0 fax: +49 681 383 60 20 info@absint.com www.absint.com

TimeWeaver combines static path analysis with real-time instruction-level tracing to provide worst-case

execution time estimates. The computed time bounds provide valuable feedback for assessing system safety

and for optimizing worst-case performance.

Supported architectures and trace formats

· All PowerPC boards able to emit Nexus program trace messages (IEEE-ISTO 5001, class 2 or higher), e.g.:

 PowerPC QorIQ P204x/P30xx/P40xx/P50xx (e500mc core), PowerPC QorIQ T series (e5500/e6500 core),

 PowerPC Qorivva line MPC55xx/MPC56xx/MPC57xx (e200 core).

· ARM using cycle-accurate ETM traces, e.g.: Cortex-A53, Cortex-R5F.

· TriCore AUDO family (e.g. TC1796), TriCore AURIX (e.g. TC275), and TriCore AURIX 2nd Generation (e.g. Tc3xx).

· Lauterbach Trace32 BRANCHFLOW export trace

·NEC/RENESAS V850 and RH850

Hybrid Worst-Case Execution Time Analysis

Why do you need TimeWeaver?

· analyses all potential execution paths and computes the based on the execution times of trace TimeWeaver longest path

segments observed in real-time traces.

· supports , e.g. Nexus branch history target messages. The computed time bounds TimeWeaver non-intrusive tracing

are compliant to requirements of safety standards like DO-178B, DO-178C, ISO 26262, etc.

· reports information at the instruction level with respect to all possible execution paths for all TimeWeaver test coverage

considered trace segments. This gives valuable feedback for improving the test coverage of the system.

· generates and for and purposes, e.g.: TimeWeaver visualizationscustomizable reports documentation certification

 - global end-to-end time, based on the maximum observed trace segment times combined to an overall bound

 - end-to-end time bounds for specific functions, depending on trace points

 - GANTT chart of task execution times extracted from trace data

 - total interrupt blocking time per trace segment

 - time variance of each trace segment

 - trace coverage

 - maximum possible (based on static program analysis) and maximum observed iteration counts for loops

· supports execution and integration in frameworks.TimeWeaver batch mode continuous integration

· On Tricore AURIX devices, supports highly efficient via Infineon DAS.TimeWeaver interactive MCDS tracing

AbsInt Angewandte Informatik GmbH Science Park 1 D-66123 Saarbrücken Germany

phone: +49 681 383 60 0 fax: +49 681 383 60 20 info@absint.com www.absint.com

TimeWeaver

Entry Point

clock 10200 kHz ;

loop "_codebook" + 1 loop exactly 16 end;

recursion "_fac" max 6;

snippet "printf" is not analyzed and takes max 333 cycles;

flow "U_MOD" + 0xAC bytes / "U_MOD" + 0xC4 bytes is max 4;

area from 0x20 to 0x497 is readonly;

Specifications (*.ais)

Worst Case Execution Time (WCET)
estimate based on local tracing information
+ Trace Coverage report
+ Time Variance report over all traces
+ Visualization, Documentation

void Task (void) {
variable++;
function();
next++:
if (next)

do this;
terminate()

}

Application Code

Executable
(*.elf /*.out)

Compiler
Linker

4
Instruction-Level Traces

TimingProfiler

TimingProfiler helps developers identify application parts that are causing unsatisfactory execution times. It

is ideally suited for constantly monitoring timing behavior during software development and in model-based

development environments. delivers results as soon as there is compiled code. It can be used TimingProfiler

early in the process when measurements on physical hardware are costly or not even possible.

Supported processors and compilers

·TriCore/AURIX (Tasking/gcc/Diab)

·PowerPC (/Diab/gcc/GHS/CodeWarrior/DDC-1 CompCert

Score)

·NEC/Renesas V850and RH850 (GHS/Diab/Renesas CS+)

·ARM (Cortex-M/Cortex-R) (/TI/ARM/gcc/GHS/CompCert

Tasking/Keil MDK-ARM/clang/Diab, GHS Ada)

 For further targets, please contact us.

Call graph with timing information Usage of variables

Monitoring Timing Behavior During Code Development

Why do you need TimingProfiler?

· TimingProfiler helps address timing behavior continuously during development . from early stages on

· Developers can the timing effects of their implementation decisions.immediately understand

· TimingProfiler the call and control flow graph with timing information and displays relevant information about visualizes

the executable.

· TimingProfiler computes worst-case execution time estimates for a slightly idealized model of the target processor.

In contrast to aiT, it cannot derive guaranteed timing bounds, but efficiently computes .timing estimates

· and are required. No access to physical hardware no code instrumentation

· TimingProfiler automatically explores in a program for all potential inputs. all execution paths

· is needed to set up and execute elaborate timing measurements. No effort

· TimingProfiler can be into the development process and used in easily integrated continuous test and integration

frameworks.

· Developers can early and .identify bottlenecks avoid late-stage integration problems

Global contributions

·dsPIC (Microchip)
·MCS251 (Keil)
·LEON2/LEON3/LEON4 (gcc/GNAT)
·RISC-V (/gcc)CompCert

·Nios II (gcc)
·MIPS32 (gcc)
·RL78 (IAR)

AbsInt Angewandte Informatik GmbH Science Park 1 D-66123 Saarbrücken Germany

phone: +49 681 383 60 0 fax: +49 681 383 60 20 info@absint.com www.absint.com

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5

